当前位置:首页 > 电源 > 功率器件
[导读]碳化硅 (SiC) 用于各种应用已有 100 多年的历史。然而,如今半导体材料比以往任何时候都更受欢迎,这在很大程度上是由于其在工业应用中的使用。

碳化硅 (SiC) 用于各种应用已有 100 多年的历史。然而,如今半导体材料比以往任何时候都更受欢迎,这在很大程度上是由于其在工业应用中的使用。

在本文中,我们将探讨为什么 SiC 突然流行起来,是什么让它成为工业应用的好材料,以及推动其采用率增长的一些应用。

碳化硅:概述

虽然 SiC 在电子应用中的使用可以追溯到 1900 年代初期,但直到 1990 年代它才真正开始作为半导体材料使用。正是在这一点上,它首先被用于肖特基二极管、FET 和 MOSFET。虽然 SiC 具有使其特别擅长处理高频、高功率和高温负载的特性,但它的采用速度很慢,这主要是因为生产中的问题。

在自然界中,SiC 是一种极为稀有的物质,主要存在于陨石残骸中。虽然它可以合成创建,但早期这样做的努力产生了不一致的结果。边缘位错、三角缺陷和其他问题减缓了 SiC 作为半导体的商业化,尽管它有许多潜在的应用,但它的使用仍然相对较少。

但是,是什么让 SiC 成为如此有效的半导体呢?作为一种宽带隙半导体材料,它具有比其他半导体材料(如传统硅)更宽的能量差,这赋予了它更高的热性能和电子性能。这使得该材料成为高功率、高温和高频应用中的明星材料。事实上,与硅半导体相比,SiC 的介电击穿强度高 10 倍,能带隙高 3 倍,热导率高 3 倍。

这些性能优势可提高整体系统效率,增加功率密度并降低系统损耗。

虽然 SiC 作为半导体材料的实力已为人所知多年,但如前所述,生产问题导致采用速度缓慢。然而,如今,Wolfspeed、Infineon、onsemi 等制造商已经改进了制造工艺,因此早先对 SiC 质量的担忧在很大程度上已成为过去。因此,它的使用正在快速增长。

SIC 采用的完美风暴

现在,具有碳化硅专业知识的半导体制造商发现自己处于一个诱人的位置。制造工艺有了显着改进,提高了合成 SiC 的产量和可靠性。与此同时,对性能有要求的应用(如 SiC)正在迅速增加。结果是基于 SiC 的设备以令人难以置信的速度越来越受欢迎的市场。

让我们探讨一下 SiC 正在站稳脚跟的一些行业。

电动车使用

SiC 半导体最大的增长市场之一是电动汽车 (EV) 和 EV 充电系统。在车辆方面,SiC 是电机驱动的绝佳选择——不仅在我们道路上的电动汽车中,而且在电动火车中也是如此。

SiC 的性能和可靠性使其成为电机驱动电源系统的绝佳选择,并且由于其高性能尺寸比以及基于 SiC 的系统通常需要使用较少的整体组件这一事实,使用 SiC 可以减小系统尺寸和减轻重量——EV 效率的关键考虑因素。

碳化硅也在电动汽车电池充电系统中得到越来越多的应用。电动汽车采用的最大障碍之一是补充电池所需的时间,制造商正在寻找减少充电时间的方法——对于许多人来说,答案是碳化硅。通过在非车载充电解决方案中使用 SiC 功率元件,EV 充电站制造商可以利用 SiC 的快速开关速度和高功率传输能力来提供更好的充电性能。结果是充电时间快了 2 倍。

数据中心和不间断电源

随着越来越多的组织进行数字化转型,数据中心在各种规模和垂直行业中的作用只会越来越大。这些数据中心充当各种关键任务数据的中枢神经系统,对于持续和成功的业务运营至关重要——但这是有代价的。

事实上,国际能源署估计全球 1% 的电力被数据中心消耗——这还不包括用于加密货币挖掘的能源。这种能源消耗的最大驱动因素之一是用于保持这些数据中心凉爽的电力,空调和风扇系统需要一年 365 天,每天 24 小时运行。

但是想象一下,如果有一种材料具有更高的热效率——能够在不牺牲性能的情况下运行得更凉爽。这种材料就是碳化硅。据 Wolfspeed 称,使用其 SiC 产品的电源具有热性能改进,可节省多达 40% 的冷却能源成本。此外,随着功率密度的提高,使用 SiC 组件的数据中心可以在更小的空间内容纳更多设备。

这些数据中心的另一个组成部分是不间断电源 (UPS),它有助于确保系统即使在停电时也能保持正常运行。SiC 因其可靠性、效率以及以低损耗提供清洁电力的能力而在 UPS 设计中占有一席之地。当 UPS 获取直流电并将其转换为交流电时,会出现损耗——缩短 UPS 提供备用电源的时间的损耗。SiC 有助于减少这些损耗,增加 UPS 容量。凭借更高的功率密度,UPS 系统还可以在不扩大占地面积的情况下提供更高的性能——这是考虑空间限制时的一个关键因素。

SIC 的今天和明天

随着消费者和市政层面对电动汽车的需求不断增长,以及对数据中心支持物联网、软件和其他数据密集型操作生成的大量数据的需求不断增加,SiC 无疑是一种半导体未来。

随着越来越多的制造商扩展其 SiC 产品,生产工艺不断改进并降低成本。随着应用的增长,碳化硅在未来几年仍将是半导体设计的关键部分。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭