在印制电路板(PCB)设计中,过孔作为实现不同层间电气连接的关键结构,其性能直接决定了整个电路的可靠性与稳定性。其中,过孔孔径大小不仅影响 PCB 的空间利用率和制造成本,更对电流传输能力(通流能力)产生显著影响。本文将从过孔的结构原理出发,系统分析孔径大小与通流能力的内在关联,结合实际应用场景提供选型建议,为 PCB 设计工程师提供技术参考。
在现代信息化战争中,军用装备的电磁环境日益复杂,雷达、通信、导航等电子设备密集部署,电磁干扰已成为影响装备作战效能的关键因素。军用电磁兼容(EMC)测试系统作为保障装备电磁安全性的核心手段,不仅能精准定位电磁干扰源,更能通过自动化技术实现干扰整改,为武器系统的稳定运行筑牢 “电磁防线”。当前,五大主流军用电磁兼容测试系统已形成覆盖 “干扰监测 - 定位分析 - 仿真预测 - 整改优化 - 验证评估” 的全流程技术体系,成为军工装备研发、生产与列装的核心支撑。
在电子制造领域,DFM(Design for Manufacturability,可制造性设计)作为连接研发与量产的桥梁,通过在设计阶段预判制造风险,已成为提升产品良率、降低成本的核心工具。以手机摄像头模组封装工艺为例,传统BSOB(Bond Stitch on Ball)键合模式向Normal Bond工艺的转型,正是DFM理念在微观制造场景中的典型实践。
球栅阵列(BGA)封装凭借其高密度引脚、优异电性能和散热特性,已成为5G通信、汽车电子等领域的核心封装形式。然而,其复杂的焊接工艺和隐匿性失效模式(如枕头效应、焊点开裂)对可靠性构成严峻挑战。本文结合IPC-7095D标准,系统解析BGA失效机理与工艺优化策略。
在电子制造产业链中,PCB设计作为产品实现的源头环节,其质量直接决定SMT(表面贴装技术)生产的良率与效率。据行业统计,70%以上的SMT生产故障可追溯至PCB设计缺陷,这些缺陷不仅导致材料浪费与返工成本激增,更可能引发产品可靠性风险。本文从PCB设计规范出发,系统解析设计不良对SMT生产的关键影响,并提出基于DFM(可制造性设计)的优化策略。
在电子制造领域,PCB(印刷电路板)的可靠性直接决定了终端产品的性能与寿命。其中,BGA(球栅阵列)焊点裂纹、爆板及坑裂是三类典型失效模式,其成因涉及材料、工艺、设计等多维度因素。本文从失效机理出发,结合行业经典案例,系统解析这三类问题的根源与解决方案。
在SMT(表面贴装技术)生产中,PCB焊盘设计是决定焊接质量的核心环节。据行业统计,约60%的焊接缺陷源于焊盘设计不合理,如立碑、桥连、空洞等问题均与焊盘尺寸、形状及布局密切相关。本文基于IPC国际标准与行业实践,系统解析SMT贴片元器件与PCB焊盘设计的协同优化标准。
在新能源汽车电控系统、5G基站等高密度电子设备中,BGA(球栅阵列)封装凭借其引脚密度高、信号传输快等优势,已成为芯片与PCB(印刷电路板)连接的核心技术。然而,BGA锡球与铜基板界面处形成的界面合金共化物(IMC,Intermetallic Compound),却如同一把“双刃剑”——既是焊接强度的保障,也是失效的潜在源头。
在电子制造领域,SMT(表面贴装技术)因其高效、精准的特性被广泛应用。然而,SMT生产过程中的“错漏反”问题(即加错料、漏装料、物料反向)仍是制约产品质量和生产效率的关键因素。本文将从错漏反预防策略与换线(接换料)标准规范两大维度,系统解析SMT生产中的核心管控要点。
惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。
在电子制造领域,SMT(表面贴装技术)的物料管理直接决定生产效率与产品良率。从元器件的精密存储到辅料的高效周转,科学的管理体系需贯穿仓储、领用、使用全流程。本文基于行业实践,解析SMT物料管理的核心规范,为企业构建高效、可靠的物料管理体系提供参考。
在电子制造领域,SMT(表面贴装技术)的抛料与散料管理直接影响生产效率与产品良率。抛料不仅导致材料浪费,还会延长生产周期;散料若处理不当,则可能引发错料、漏料等致命缺陷。本文基于行业实践,系统解析SMT抛料原因与散料管理规范,为制造企业提供可落地的解决方案。
在智能手机精密制造领域,SMT(表面贴装技术)作为核心工艺环节,其质量稳定性直接决定产品良率与可靠性。IPQC(制程巡检)作为生产过程中的“质量守门员”,通过标准化巡检流程与关键控制点管理,构建起手机制程的零缺陷防线。本文基于经典手机制程案例,解析SMT IPQC巡检的核心标准体系。
在电子制造领域,PCB(印刷电路板)焊盘设计是确保焊接质量与电路可靠性的关键环节。尤其在波峰焊工艺中,合理的焊盘设计不仅能提高生产效率,还能显著降低焊接缺陷率。本文将从设计标准、工艺要求及常见问题解决方案三个维度,系统阐述波峰焊PCB焊盘的设计规范。
在电子制造领域,SMT(表面贴装技术)与PCBA(印刷电路板组装)的可靠性直接决定了终端产品的性能与寿命。随着电子产品向高密度、高集成度、高可靠性方向发展,PCBA可靠性测试已成为质量控制的核心环节。本文将从测试标准、关键项目、测试方法及行业实践四个维度,系统解析PCBA可靠性测试的技术框架。