在日常使用二极管的过程当中,我们需要就二极管进行选择。那么,如何去选择一款适用的二极管呢?如果你存在这个疑惑,不妨通过本文寻找你要的答案。
上篇文章中,小编对变容二极管有所阐述。为增进大家对变容二极管的认识,本文将对变容二极管的作用特点、变容二极管的驱动技巧予以介绍。
为增进大家对二极管的认识,本文将对变容二极管的工作原理、变容二极管检测方法等内容予以介绍。
为了增进大家对TVS的认识,本文将从三个方面介绍TVS:1.TVS有哪些使用注意事项?2.TVS选型有何注意事项?3.TVS与稳压二极管有何区别?
为了增进大家对TVS的认识,本文将对TVS的4大应用,以及TVS二极管的一些选型技巧予以介绍。
为增进大家对TVS的认识,本文将对TVS的一些优势以及TVS二极管的主要参数予以介绍。
双极性晶体管(英语:bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件,由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。
由于点接触型晶体管制造工艺复杂,致使许多产品出现故障,它还存在噪声大、在功率大时难于控制、适用范围窄等缺点。为了克服这些缺点,肖克莱提出了用一种“整流结”来代替金属半导体接点的大胆设想。半导体研究小组又提出了这种半导体器件的工作原理。
晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等,有时特指双极型器件),具有检波、整流、放大、开关、稳压、信号调制等多种功能。
掺铒光纤放大器(EDFA,即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。
DWDM首先把引入的光信号分配给特定频带内的指定频率(波长,lambda),然后把信号复用到一根光纤中去,采用这种方式就可以大大增加已铺设光缆的带宽。由于引入(incoming)信号并不在光层终止,接口的速率和格式就可以保持独立,这样就允许服务供应商把DWDM技术和网络中现有的设备集成起来,同时又获得了现有铺设光缆中没有得以利用的大量带宽。
密集波分复用(Dense Wavelength Division Multiplexing)技术,也就是人们常说的DWDM,指的是一种光纤数据传输技术,这一技术利用激光的波长按照比特位并行传输或者字符串行传输方式在光纤内传送数据。 DWDM是光纤网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络/同步数字序列(SONET/SDH)协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。
波分复用WDM(Wavelength Division Multiplexing)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
在通信中,分频是指将宽带资源分为原来的1/N,每个用户在同样的时间占用不同的宽带资源或是将信号中不同频率成分的各种信号分开,分成几个频率段。分频多路传输是指在不同宽带或频段上同时传输数据。分频多路传输可以使多个用户传输数据或充分利用频率段,加快数据传输速率。
频分多路传输是一种接收装置,该装置具有推断从时域变换到频域的接收信号的传递函数并用对应推断的传递函数的解调方法解调上述接收信号的解调电路、基于在上述解调电路推断的传递函数判断在上述解调电路解调的解调信号的可靠性的可靠性判断电路、检测解调信号的频率轴上、时间轴上的一个或两个变量的变动检测电路,对解调信号实施解映射处理的同时根据可靠性判断电路的判断结果和变动检测电路的检测结果变更解映射处理的内容的解映射电路和基于实施了解映射处理的信号进行纠错的纠错电路。