其本质是电感、电阻或芯片引脚在高频环境下表现出的等效电容特性,通常由等效串联电阻(ESR)和等效串联电感(ESL)组成。
在高频DC-DC转换器设计中,电感作为核心储能元件,其性能直接影响转换效率、功率密度和热稳定性。据行业数据显示,磁芯损耗占电感总损耗的60%-80%,而磁芯材料的选择是决定损耗特性的关键因素。本文从磁芯损耗机制、频率响应、温度稳定性等维度,系统对比铁氧体与纳米晶磁芯在DC-DC应用中的性能差异,为工程师提供科学的选型依据。
电感器是一种被动电子元件,是电路中常用的元件之一。Q值是电感器性能的一个重要指标,它表示电感器内部的耗损功率和储能功率的比值,即Q值越大,则电感器性能越好。提高电感线圈Q值可以使得电路性能更稳定,减少电路的能量消耗。提起电感线圈Q值,很多电子工程师不会陌生,电感线圈Q值是衡量其性能的重要指标,而高Q值意味着电感线圈在工作中更好地储存和释放能量,提高电路的效率及性能。
上海 2025年7月14日 /美通社/ -- MPS芯源系统(NASDAQ代码:MPWR)近日发布的MP2764是新一代高集成度、高效率、带NVDC路径管理的升降压充电管理芯片,专为笔记本电脑、平板电脑、游戏掌机等应用而设计,能出色地满足便携式电子设备对于高功率性能、小尺寸的双...
低频纹波与输出电路的滤波电容容量相关,可通过增大电感、电容参数和采用前馈控制方法来降低。
降压式 DC-DC 转换器是一种将较高直流输入电压转换为较低直流输出电压的电源转换电路。其基本工作原理是通过控制 MOSFET 的导通与关断,周期性地将输入电压施加到电感上。在 MOSFET 导通期间,电感存储能量,电流逐渐上升;当 MOSFET 关断时,电感释放能量,维持电流继续流向负载,通过这种电感的储能和释能过程实现降压功能。输出电压的大小由 MOSFET 的导通时间(占空比)决定,占空比越小,输出电压越低。例如,一个输入电压为 12V 的降压式 DC-DC 转换器,若要得到 5V 的输出电压,需合理调节占空比来达成。这种工作模式使得降压式 DC-DC 转换器在众多电子设备中广泛应用,如手机充电器、笔记本电脑电源适配器等,为不同电压需求的电路模块提供适配的电源。
电感饱和是指在交流电路中,当电感器中通过电流的幅值过大时,电感器的磁场达到一定强度,导致磁芯饱和,使得电感器内部电感值下降的现象。
对于包含电容和电感及电阻元件的无源一端口网络,其端口可能呈现容性、感性及电阻性,当电路端口的电压U和电流I,出现同相位,电路呈电阻性时。
电感饱和的本质是磁芯材料达到磁化极限。当电流增大时,磁芯内部的磁场强度(H)随之增加,磁通密度(B)按非线性关系上升。一旦B达到材料的饱和磁通密度(Bm),磁导率(μ)急剧下降,电感值(L=μN²A/l)大幅降低,电感失去抑制电流变化的能力。
电感,作为闭合回路的一种固有属性,描述了导线内电流变化时,在导线及其周边所产生的交变磁通。它定义为磁通量与生成该磁通的电流之比,用公式表示即为L=Φ/I。其中,NBS/I表示磁通量与电流的比值,而dΦ/dI则反映了磁通量随电流变化的速率。
全新空气线圈电感满足当前高频应用对增强信号滤波、高效能能量传输与精密电感容差的需求
一直以来,色环电感都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来色环电感的相关介绍,详细内容请看下文。
在下述的内容中,小编将会对色环电感的相关消息予以报道,如果色环电感是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
以下内容中,小编将对色环电感的相关内容进行着重介绍和阐述,希望本文能帮您增进对色环电感的了解,和小编一起来看看吧。
【2025年3月25日, 德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日宣布PSOC™ 4微控制器(MCU)系列加入了Multi-Sense功能。公司将通过推出新的专有电感感应技术,以及非侵入式和非接触式液体感应解决方案扩展其领先的电容感应技术CAPSENSE™。PSOCTM 4为开发人员在开发新人机接口(HMI)和感应解决方案带来了无限的可能性。从带有金属触控按钮的时尚产品,到防水触控按钮和创新的液体感应方式,PSOCTM 4 Multi-Sense解锁了许多新的感应方式。
电感值是电感选型的重要参数,通常以微亨(µH)为单位。电感值的选择会影响电路的纹波电流和负载响应。根据电路设计要求确定所需的电感值,并考虑电感值对电路性能的影响。
使用高频变压器:高频变压器可以减小开关转换时产生的磁感应耦合损耗,提高效率。高频变压器还能减小电感体积,进一步优化电源设计。
电感是一种电子元件,通俗来说就是电线圈。当电流通过电线圈时会产生磁场,因为电线圈本身就是导体,所以会产生电磁感应,即电压。电感的大小与线圈的匝数和线圈的截面积有关,单位为亨利(H)。电感的作用是阻碍交流电流的流动,所以它通常用于滤波、调节电压和降低电路中功率
在电子电路领域,电感和电容作为两种基础且重要的元件,广泛应用于各类电路之中。从简单的滤波电路到复杂的通信系统,它们的身影无处不在。然而,对于电感和电容究竟属于线性元件还是非线性元件,以及如何准确判断这一属性,许多人存在疑惑。深入理解这些问题,对于电路设计、分析以及故障排查都具有重要意义。
在电子电路领域,π 型滤波器作为一种重要的滤波元件,广泛应用于电源电路、信号处理电路等多个方面,其核心在于电感和电容的协同工作,能够高效地滤除电路中的杂波和干扰信号,为各类电子设备提供稳定、纯净的电源或信号。深入理解 π 型滤波器中电感和电容的协同工作机制,对于优化电路性能、提升电子设备的可靠性具有重要意义。