• 压电式器件简化振动能量收集原理

    压电式器件简化振动能量收集原理虽然“能量收集”自 2000 年初就已出现,但只是凭借近期的技术发展才将其推进至商业化阶段。简而言之,2010 年我们处在一个转折点并将迎来其“成长”阶段。运用能量收集技术的楼宇自动

  • 晶体滤波器设计

    晶体滤波器以高频率稳定度和频率衰减特性陡峭震现在滤波技术中,晶体滤波器主要由特殊设计的石英谐振器构成,天然石英晶体器少而昂贵,现代用水热法培育人造石英晶体技术相当成熟且能成批生产,如性能良好的压电晶体

  • LC滤波器的设计

    低通滤波器设计首先根据给定技术条件,选择某一形式的低通原则型滤波器,查出、计算归一化元件值,然后用所有要求的截止频率和负载电阻进行标定,便可得到所需要低通滤波网络。1、滤波器特性的逼近 理想化的低通滤波

  • 三相负载的星形连接方法

    三相负载作星形连接时,如果负载不对称,一定要接成三相四线制,如图3.6所示。图中三相负载u、Zv、Zw分别接于电源各端线与中线之间,三相负载的公共点用N′表示,称为负载中点N′与电源中点N的连线称为中线。负载星形

  • 三相电源作三角形连接时的方法

    如图3.5所示,将电源的三相绕组的始、末端依次相连接,再从三个连接点引出三根端线,这就是三相电源的三角形连接。 三相电源作三角形连接时,线电压等于相电压,即: UL=UP

  • 三相电源的连接方法及原理

    三相发电机的三相绕组有星形(Y)和三角形(△)两种连接方式。 3.1.2.1 星形连接 如图3.3所示,将电源的三相绕组的末端连接在一起,形成一个节点N称为中性点(零点),再将三相绕组的始端U、V、W分别引出三根输出

  • 三相对称电动势原理

    三相交流电是由三相交流发电机产生的。图3.1(a)是一个三相交流发电机的原理示意图。它主要由两部分组成,里面旋转的部分称为转子,在转子的线圈中通以直流电流,则在空间产生一个按正弦规律分布的磁场; 图3.1 三

  • 基于HT9032C的新型来电显示器设计

    为了使用户快捷地知道主叫用户的身份,设计了一种新型来电显示器(CID)。该显示器采用查询的方式在单数据消息格式下显示主叫用户姓名,提高了设备的时效性。本文详细介绍了系统各组成部分的硬件设计电路,给出了软件流程和实验数据。实验证明,该系统能够快速、准确地显示来电的主叫用户姓名和其他来电信息。

  • SHCAN2000触摸屏监控板在现场总线控制系统中的应用

    本设计成功用触摸屏与TMS320F2812现场智能仪表进行通信,工业现场不适应和无必要安放计算机情况下,实现了人机之间信息交互,达到了控制目的。此外,该设计还减轻了下位机工作负担,用户不用编写复杂监控子程序,同时监控界面美观生动,触摸屏成本低,方便耐用,通讯稳定。

  • 长尾式差分放大电路分析

    长尾式电路:如图所示为典型的差分放大电路,由于Re接负载电源-VEE,拖一个尾巴,故称为长尾式电路。 电路参数理想对称:Rb1=Rb2=Rb,Rc1=Rc2=Rc;T1管与T2管的特性相同,β1=β2=β,rbe1=rbe2=rbe;Re为公共的发射

  • 如何分析集成运算放大电路中的恒流源电路

    普通镜像恒流源、多集电极恒流源、高精度镜像恒流源、高内阻恒流源和镜像微恒流源电路,以及恒流源电路输出电阻的计算等。 分析恒流源电路的方法是: (1)确定恒流源电路中的基准晶体管或场效应管;

  • 差分放大电路对共模信号的抑制能力的解析

    差分放大电路及其共模抑制特性。从对双端输入信号的差模和共模分解出发,提出差分放大电路不但能进行差分放大,而且具有共模抑制能力。 差分放大电路有二个输入端,如图1(a)所示。图1 设两个输入信号的差模值

  • 阅读运算放大器电路图的方法

    集成运算放大电路的一般组成及其单元结构,如恒流源电路、差分放大电路、CC-CE、CC-CB电路和互补输出电路等。运算放大器主要由输入级、中间放大级、输出级和偏置电路等四部分组成,如图1所示。图1 运算放大器

  • 一种低功耗高速的跟随器设计和实现

    提出了一种应用于CSTN-LCD系统中低功耗、高转换速率的跟随器的实现方案。基于GSMC±9V的0.18 μm CMOS高压工艺SPICE模型的仿真结果表明,在典型的转角下,打开2个辅助模块时,静态功耗约为35 μA;关掉辅助模块时,主放大器的静态功耗为24 μA。有外接1 μF的大电容时,屏幕上的充放电时间为10 μs;没有外接1μF的大电容时,屏幕上的充放电时间为13μs。验证表明,该跟随器能满足CSTN-LCD系统低功耗、高转换速率性能要求。

  • 平衡功率放大器的设计与实现

    设计了一个工作频段为902 MHz~928 MHz、输出功率为32 dBm、应用于读卡器系统的末级功率放大器。为了在工作频段内实现平坦的功率增益并获得良好的输入、输出驻波比,本功率放大器采用平衡放大技术设计。仿真优化和实际测试表明,在整个工作频段内放大器的增益平坦度小于±0.5 dB,输入、输出驻波比小于1.5,完全满足设计指标要求。

发布文章