传统上,模拟IC设计工程师都是通过提升电源电压和工作电流来提高设备的运行速度和动态范围,但在能源效率意识愈强的今天这一方法已很难达到最佳的效果。现今,设计者不仅追求更高的工作频率、可用带宽、噪声性能和动态范围,还要同时保证设备的功耗不变甚至更低。
本文将讨论如何测量并辨别爆米花噪声;以及相对于1/f 及宽带噪声的幅度;还有对爆米花噪声特别敏感的诸多应用。
本文将介绍宽带放大器的设计方法以及仿真和实测的结果。
在对原设计方案进行大量反设计的基础上,以电机控制电路集成化、先进的PWM控制技术为设计思想,综合运用传感器技术、电力电子技术、微电子技术和自动控制技术,拟定了旋翼转速调节器的总体设计方案并完成了具体电路的设计。
在此章节我们将推荐几种用于分析低频噪声并确定是否有爆米花噪声方法。所使用的分析技术独立于用于测量数据的电路结构。工程师一般用定性方法都能检测出一个示波器波形,并确定一个信号是否具有爆米花噪声。我们还将介绍如何用定性方法确定爆米花噪声。此外,我们将讨论如何设置爆米花噪声以及 1/f 噪声的通过/失败极限。
设计了一种用于耳机驱动的CMOS功率放大器,该放大器采用0.35 μm双层多晶硅工艺实现,驱动32 Ω的电阻负载.该设计采用三级放大两级密勒补偿的电路结构,通过提高增益带宽来提高音频放大器的性能.仿真结果表明,该电路的开环直流增益为70 dB,相位裕度达到86.6°,单位增益带宽为100 MHz.输出级采用推挽式AB类结构,能有效地提高输出电压的摆幅,从而得到电路在低电源电压下的高驱动能力.结果表明,在3.3 V电源电压下,电压输出摆幅为2.7 V.
系统设计需要考虑射频链路的预算、天线设计、电池寿命及射频调整电路等诸多因素,另外,还会涉及到输出功率与发送器电流消耗的折中。
介绍了用SG270可控增益音频放大器、AT89C51单片机和LM4884B可抑制射频干扰音频放大器进行自反馈即时调控音频输入信号放大和智能协调控制均幅信号输出的电路组成,提出了用于音源不稳定或嘈杂背景下话筒(麦克风)音频信号智能放大器的设计构想,同时给出了硬件电路原理图和软件方案。
分析了射频识别电路中高频功放的特点,在此基础上提出了一种新型的高频功放电路,并对他的工作原理进行了分析。
立体声耳机是一种应用非常广泛的便携式音频装置。新日本无线电(NJR或JRC)公司推出的NJU8721单片IC是一种50mW+50mW的立体声D类数字耳机放大器。
本文介绍了一种基于USB接口的协议转换器(EmJTAG)设计思想,并给出了硬件设计和固件设计的实现方法。
本文重点介绍该采集电路的硬件设计,并对采集系统中由时钟抖动引起的噪声进行理论分析。