随着智能网联汽车进入 “千万辆级” 普及阶段,车辆已从孤立的交通载体转变为开放的移动智能终端。然而,电子电气架构的复杂化与车云交互的频繁化,使固件篡改、总线攻击等安全威胁层出不穷。作为汽车电子控制单元(ECU)的 “大脑”,微控制器(MCU)的安全性能直接决定车辆安全底线。新一代 MCU 通过硬件革新、架构升级与生态协同,正构建起覆盖 “感知 - 传输 - 决策” 全链路的安全防护体系。
在新能源汽车向高续航、高功率、高安全性迈进的过程中,车用 IGBT(绝缘栅双极型晶体管)作为电力电子系统的 “心脏”,其性能直接决定了整车的动力输出、能源效率与运行可靠性。然而,车用 IGBT 长期处于高低温交替、电流冲击频繁的严苛工况下,极易出现封装老化、热疲劳失效等问题。在此背景下,功率循环测试作为模拟实际工况、暴露潜在缺陷、优化产品设计的核心手段,正成为推动车用 IGBT 性能持续提升的关键支撑。
在电子设备广泛应用的当下,开关电源作为能量转换的核心部件,其电磁兼容性(EMC)直接影响设备整体性能与周边环境安全。其中,辐射骚扰作为开关电源 EMC 问题的主要表现形式,不仅可能导致设备自身故障,还会干扰其他电子设备的正常运行,甚至违反国际国内相关电磁兼容标准。因此,深入分析开关电源辐射骚扰的产生机制,并制定有效的抑制策略,成为电子工程领域的重要研究课题。
在电动车高压回路中,滤波电容器承担着平抑直流母线纹波、抑制高频谐波、保障功率器件稳定运行的核心作用。随着 800V 高压平台的普及,传统铝电解电容器因体积庞大、ESR(等效串联电阻)偏高,已难以适配电驱系统集成化、小型化的发展需求。数据显示,传统铝电解电容在 500V 高压工况下,实现 22μF 容量需占用约 15cm³ 空间,而电动车电驱系统对电容体积的容忍度已降至 5cm³ 以下。这种矛盾推动着小型化高压滤波电容器的技术革新,其性能直接关系到电动车的续航效率、功率密度与运行可靠性。
在高精度 ADC、高速 DAC 及射频收发器构成的高性能信号链中,电源系统的纹波噪声已成为制约系统性能的关键因素。当纹波噪声通过电源网络耦合到信号路径时,会直接导致信噪比(SNR)下降、有效位数(ENOB)降低,甚至引发数字电路误码。本文将从纹波的危害机理出发,系统阐述高性能信号链中电源纹波的分析框架与工程实践方法。
在高速数据采集与信号处理系统中,高速数据转换器(ADC/DAC)是连接模拟信号与数字信号的核心桥梁,其性能直接决定了整个系统的精度、带宽与动态范围。而配电网络作为保障高速数据转换器稳定工作的 “能量中枢”,其设计质量对转换器的噪声抑制能力、线性度及功耗控制具有决定性影响。随着转换器采样率突破 1GSps、分辨率达到 16 位以上,传统配电方案已难以满足严苛的供电需求,深入剖析配电网络的优化策略成为高速电路设计领域的关键课题。
在汽车行业碳中和目标的推动下,大功率直流电机在动力系统、安全控制及舒适配置中的应用日益广泛,对驱动芯片的灵活性、稳定性提出了更高要求。意法半导体推出的 L99H01 直流电机电桥驱动器,作为 L9903 与 L9904 的升级继任者,凭借适配多场景的核心优势,成为应对汽车减排需求的关键器件。其 H 桥配置的可扩展设计,既能满足动力系统的高功率需求,也能适配座椅调节、车窗升降等舒适型应用,为车企提供了模块化的驱动解决方案。
汽车图像传感器已从单一成像工具进化为 ADAS 系统的 “核心神经末梢”,其技术突破正重构行车安全的底层逻辑。当前主流的 CMOS 传感器通过硬件升级实现了性能跃迁 —— 分辨率从早期 640×480 像素跃升至 4096×2048 像素级别,配合 120dB 以上的动态范围,可精准捕捉 250 米外的目标特征。安森美 Hyperlux™系列传感器凭借 150dB 高动态范围技术,能轻松应对进出隧道时的光线剧变,避免因过曝或欠曝导致的行人漏检风险。
运算放大器(简称 “运放”)作为模拟电路的核心器件,广泛应用于信号放大、滤波、比较、运算等场景。其性能优劣直接决定整个电路的稳定性与精度,但在实际使用中,即使选用高性能运放,若忽视细节设计,仍可能导致电路功能失效或性能大幅下降。本文结合工程实践,从电源配置、输入输出特性、频率响应、噪声控制、PCB 布局五个维度,系统梳理运放使用中需重点关注的问题及解决方案。
在电子制造业与电子设备运维领域,静电放电(Electrostatic Discharge,简称 ESD)是导致电子器件功能失效的 “隐形杀手”。据行业数据统计,电子制造业中因 ESD 引发的产品不良率占总不良率的 25% 以上,且超过 30% 的电子器件早期失效与 ESD 损伤直接相关。ESD 之所以能对精密电子器件造成毁灭性影响,核心源于其触发的两种关键失效机理 ——静电放电电流烧毁机理与静电场击穿机理。这两种机理从不同维度破坏器件结构与性能,最终导致器件无法正常工作,深入理解其作用过程对电子器件的防护设计与可靠性提升具有重要意义。