在移动通信技术的演进历程中,LTE(长期演进)作为 4G 网络的核心技术,凭借其高速率、低时延的特性,成为连接海量终端与网络的关键纽带。而信令流程作为 LTE 网络运行的 “神经中枢”,负责协调终端与网络之间的资源分配、状态管理和业务交互,其顺畅与否直接决定了网络性能和用户体验。同时,对关键指标的精准监控与优化,更是保障网络稳定运行的核心环节。
在通信技术飞速发展的时代,5G 的广泛应用为社会带来了深刻变革。而如今,5G-A(5G-Advanced)正崭露头角,作为 5G 技术的演进与增强版本,5G-A 不仅继承了 5G 的优势,更在多个维度实现了突破,尤其是在重塑无线感知能力方面,带来了前所未有的技术跃迁,开启了通信与感知融合的新篇章。
在电力电子设备的运行中,EI 变压器作为一种常见的电磁转换装置,其空载电流特性直接关系到设备的能效与稳定性。空载电流是指变压器在次级开路时,初级线圈通过的电流,它主要由磁化电流和铁损电流两部分组成。其中,磁化电流用于建立铁芯中的交变磁场,而铁损电流则是因铁芯的磁滞损耗和涡流损耗产生的。在实际应用中,降低空载电流是提升变压器性能的重要方向,那么增加初级线圈的匝数是否能实现这一目标呢?
在人类与冠状病毒艰苦对抗的岁月里,全球医疗体系遭受了前所未有的冲击。医院人满为患,医疗资源极度紧张,传统的医疗模式在疫情的风暴中暴露出诸多短板。然而,危机往往与机遇并存,在这场抗疫之战中,物联网医疗可穿戴设备崭露头角,其在疫情期间展现出的独特价值,让人们看到了医疗健康领域未来发展的新方向。随着疫情进入常态化防控及后疫情时代,物联网医疗可穿戴设备正蓄势待发,即将迎来蓬勃发展的新阶段。
在 PCB(印制电路板)设计中,电源部分的布局布线一直是工程师关注的核心环节,其中电感和 MOS 管所在区域的走线限制更是行业内的重要规范。这一设计准则并非凭空制定,而是基于电磁兼容、信号完整性、散热性能等多方面的工程实践总结。深入理解这一规则背后的原理,对提升电源电路的稳定性和可靠性具有关键意义。
锂电池,作为当前储能系统的主流技术,凭借其高能量密度、长循环寿命等优势,广泛应用于各类储能场景。然而,锂电池的化学特性决定了其在某些极端情况下,如过充、过热、短路或机械损伤时,极易发生热失控现象。一旦热失控触发,电池内部的电解液会迅速分解,释放出大量的可燃性气体,而氢气,正是其中最具威胁的 “隐形杀手”。
在现代电力系统中,随着各类非线性负载的广泛应用,如变频器、整流器等,谐波污染和无功功率问题日益严重,这不仅降低了电能质量,还增加了能源损耗,影响电力系统的安全稳定运行。为解决这些问题,有源滤波器作为一种先进的电力电子装置应运而生。有源滤波器不仅能够有效抑制谐波,其在无功补偿方面的能力也备受关注。那么,有源滤波器究竟能否实现无功补偿功能?这对优化电力系统性能、提升电能利用效率具有重要意义,值得深入探讨。
在电子设备性能不断提升的当下,散热问题愈发凸显。无论是电脑、手机,还是各类工业设备,过热都可能导致性能下降、寿命缩短,甚至引发故障。因此,选择一个高性价比的散热解决方案,对于保障电子设备的稳定运行至关重要。
从直观效果来看,线数越多,垂直分辨率越高,对物体轮廓的描绘也就越精确。早期产品多使用 16 线激光雷达,这种低线数产品仅适合低速环境。随着技术发展到 32 线、64 线,逐渐适用于中低级别的 ADAS 系统。如今主流车规方案是 128 线激光雷达 ,例如禾赛科技的 Pandar128,在 10% 反射率前提下,能探测到 200 米的距离,角分辨率达 0.1°×0.125°。像极氪 9X 首次搭载的 520 线激光雷达,相比 128 线产品,垂直分辨率提升近 3 倍,可在 300 米外识别长宽超 75 厘米物体,能提前应对高速行驶中的风险。高线数激光雷达能清晰分辨 200 米外车辆轮胎纹理,而 16 线雷达仅能勾勒出模糊轮廓。高线数雷达在复杂场景中的优势也十分显著,识别路肩、低矮障碍物(如锥桶、宠物)的准确率提升 40%,误判率降低至 0.3% 以下。在极端天气下,高线数雷达的性能优势也能得以凸显,搭载 192 线激光雷达的车型在雨天仍能探测 250 米外行人,而低线数雷达在同等条件下探测距离可能缩水 60%。
在现代电子系统中,现场可编程门阵列(FPGA)凭借其开发时间短、成本效益高以及灵活的现场重配置与升级等诸多优点,被广泛应用于各种产品领域。从通信设备到工业控制,从汽车电子到航空航天,FPGA 的身影无处不在。为了充分发挥 FPGA 的高性能,其供电设计至关重要,而数字电源模块正逐渐成为满足 FPGA 供电需求的理想选择。