[导读]本文提出一种适用于这种结构振荡器的片内温度补偿方案,可以简单方便地获得更好的温度性能。
1 引言
弛张充放电振荡器在PWM电源和电容传感器中都得到了广泛的应用,也常常作为时钟产生电路用在单片功率集成电路中。但是,由于这种振荡器结构的特殊性,一般的弛张振荡器输出频率受环境温度的变化影响较大,温度性能较差。为了获得较好的温度性能,一般都要采用恒温槽等措施,但增大了体积和成本。为此,本文提出一种适用于这种结构振荡器的片内温度补偿方案,可以简单方便地获得更好的温度性能。
2 弛张振荡器的工作原理
弛张振荡器的一般结构如图1所示。弛张振荡器的工作过程如下:先用一个电流源I1向电容器C充电,这时电容器上的电压会不断上升,将电容器上的电压通过比较器与设定的阈值电压相比较。当电容器上的电压高于电位比较器的阈值电压V2时,控制部分将会控制开关动作,使I1断开,I2导通,电容器开始通过I2放电,电容器的电压开始下降,设此时的时刻为t2。当电容器的电压下降到低于低位比较器的阈值电压V1时,控制部分再次使开关动作,使I1导通,I2断开,I1又重新对电容器充电,设此时的时刻为t1。这样不停反复就可以在电容器上输出连续不断的振荡波形。


如果保持IC、C不变,则由(4)式看出电容器的充放电时间是由电容器电压的幅度唯一决定的。可通过调节2个比较器的阈值电压来调节电容器的电压幅度,从而可方便地调节振荡器的输出频率。以上分析在各个电路无时延的条件下获得的。
3 温度对输出电压频率的影响
3.1 产生频率误差的原因
任何电路结构都存在不同程度的延时。在这种结构的振荡器中,比较器和控制部分也存在一定的延时,虽然可以采用高速比较器和尽可能简单的控制结构来减少延时,但是始终无法消除延时带来的影响。因此,当电容器上的电压已经上升或下降到需要开关动作时,由于比较器和控制部分的延时Δτ使得开关往往要经过一段时间后才会动作,而在这段时间内,I1(I2)还在继续对电容器充电(放电),因此输出电压与Uc相比会产生误差(ICΔτ)/C,此时,

可以看出输出电压频率与设计值产生了偏差。
3.2 温度对输出频率的影响
显然,在不同温度条件下比较器和控制部分的延时是不一样的。由于主要考察延时对输出频率的影响,因此设在不同温度条件下IC和C保持不变,在温度T1时,比较器和控制部分产生的延时为Δτ1,在温度T2时产生的延时为Δτ2。则(5)式和(7)式可写为

从(8)式可以看出,在不同的温度条件下电容器的充放电时间发生了的变化Δt,从而导致输出电压的频率随温度而变化。
图2给出在没有温度补偿的情况下,采用CSMC 0.6μm双层金属、双层多晶硅工艺下和使用Hspice仿真出来的振荡器输出波形。其中,取IC为250μA,C为5pE,比较器采用的是参考文献[2]中介绍的高速比较器方案,低位比较器的阈值电压为2.4V,高位比较器的阈值电压为2.5V。图中T1、T2、T3分别为-40℃、27℃、85℃时的输出波形。把振荡器27℃时的输出频率设计为20MHz,测出此时振荡器的温度系数约为1685ppm/℃。图3中的曲线1给出近似的输出电压幅度与温度的关系,正如上面所推导的一样,在不同的温度条件下输出的电压幅度并不相等。

4 温度补偿的实现
为了消除温度对输出频率的影响,从(12)式可以看出还必须使Δt=0。为了实现上述要求,令T1时的V2=V’2;T2时的V2=V”2,V1保持不变,则(9)、(11)式改写为(13)式或(17)式:

从(17)式可以看出,为了消除温度对输出频率的影响,可以使电容电压在不同温度条件下取不同的电容值来实现。只要它们能满足(17)式的条件,就可以得到零温度系数的输出频率。在振荡器中,电容器电压是由比较器的阈值电压控制的,可以通过调节比较器的阈值电压来满足要求。在芯片设计中,比较器的阈值电压一般由基准源提供。基准源往往根据带隙原理来调整它的温度系数。一般会尽量调节使其具有零温度系数。但从需要出发,也可以把它调试成所需的非零温度系数。因此,可使令低位比较器的阈值电压不变,只调节高位比较器的阈值电压使其具有负温度的系数,这样,随着温度的增大UC不断降低,输出的频率较为恒定。在图3中,为了研究的方便,使输出电压与温度的关系近似为直线1。根据上述推导,以振荡器输出电压的中间值为轴,曲线1水平翻转,得到的曲线3为基准源的输出幅度曲线,从而可获得整个温度范围内的最好温度补偿效果。此时需要把基准源的温度系数调节到大约1 319ppm/℃。

图4示出按上述方法进行温度补偿的振荡器的输出波形。由于使输出电压幅度与温度的关系近似线性化,因此与实际输出曲线存在一定的误差,仍旧无法得到零温度系数的输出波形。为了仿真的方便,把比较器的阈值电压外接,人为地按照上述要求调节高位比较器的阈值电压。图4中,T1、T2、T3分别为-40℃、27℃、85℃时的输出波形。可以看出输出电压的幅度随着温度的变化而大大减小,此时仍把27℃时的输出频率设计为20MHz,测出此时振荡器的温度系数为115ppm/℃。比起没有温度补偿的温度系数有了很大的提高。

5 结束语
针对一般弛张振荡器温度系数较差的缺点,提出了一种新的片内温度补偿方案。只要在设计基准源的时候结合振荡器的要求来确定它的温度系数,就可以方便地使振荡器获得较好的温度性能,同时并不增加它的面积和成本,具有较大的实用性。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
在电子电路中,电容器是一种重要的元件,其功能是储存和释放电能。在众多类型的电容器中,固态电容和普通电容是两种常见的选择。虽然它们在功能上有很多相似之处,但它们的构造、性能和应用领域却存在显著差异。
关键字:
电容器
电容
在现代社会,电力系统如同支撑经济社会运行的 “主动脉”,其安全稳定运行至关重要。高压并联电容器作为电力系统中的关键设备,对维持电力系统的高效运行发挥着不可或缺的作用。
关键字:
电容器
电力系统
电气设备
铝电解电容器是一种电容器,其外形主要为圆柱形,外壳有着金属材质的外观,内部则有电解液和铝箔片层。铝电解电容器广泛用于电子设备领域,如电源、光电子、自动控制等领域。
关键字:
电容器
铝电解电容
X电容是跨接在电源线的火线(L)和零线(N)之间的电容器。它主要用于降低差模干扰,即火线和零线之间的噪声。X电容通常采用金属化聚丙烯薄膜或聚酯薄膜制成,具有高耐压和自愈特性。其容量范围一般在0.01μF到10μF之间。Y...
关键字:
电容
电容器
在现代电子设备中,晶振作为提供精确时钟信号的核心元件,其重要性不言而喻。从智能手机、计算机到汽车电子、通信基站,晶振的身影无处不在,它如同电子设备的 “心脏起搏器”,确保各种复杂电路有条不紊地运行。而晶振的核心 —— 石...
关键字:
晶振
时钟信号
振荡器
【2025年5月27日, 德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出采用Multi-Sense技术的 Arm® Cortex®-M0+ 微控制器(MCU)——PSOC™ 4...
关键字:
MCU
人机接口
振荡器
在电子设备的复杂电路体系里,电容器扮演着电荷存储与释放的关键角色。钽电容,作为电容器家族中的重要一员,凭借其体积小、容量大、稳定性高以及寿命长等突出特性,在众多电子设备中得到广泛应用。而当涉及到钽电容的精度时,不同精度的...
关键字:
电容器
钽电容
精度
在深入探讨晶体时钟信号能否走成差分线之前,我们需要先明晰什么是晶体时钟信号以及差分线的概念。晶体时钟信号源自晶体振荡器(晶振),晶振利用晶体的压电效应,在外加交变电压时,晶片机械变形产生振动,进而生成周期性振荡信号,为数...
关键字:
晶体时钟信号
振荡器
差分信号
电容器组在电力系统中起着至关重要的作用,然而过电压运行和操作过电压现象会对其安全稳定运行造成严重威胁。本文详细探讨了防止电容器组过电压运行以及限制操作过电压的多种有效方法,旨在提升电容器组运行的可靠性与稳定性。
关键字:
电容器
电力系统
无功补偿
在本教程中,我们将使用Capacitor 6、Angular和TypeScript构建一个Android应用程序,该应用程序通过串行端口连接到BleuIO USB加密狗。该应用程序允许用户直接从Android设备发送和接...
关键字:
Android
USB
电容器
BLE设备
振荡器有多种形式。本次实验活动将研究Hartley配置,该配置使用带抽头的电感分压器来提供反馈路径。
关键字:
振荡器
电感分压器
电阻
在电力系统中,电容器组广泛应用于无功补偿、改善电压质量等方面。而装设于电容器组的电抗器,虽看似不起眼,却发挥着至关重要的作用。正确确定电抗器的电抗值和电压,对于保障电容器组乃至整个电力系统的安全稳定运行具有不可忽视的意义...
关键字:
电容器
电抗器
电力系统
本项目演示了如何通过OTG (on - go) USB在Android设备上使用BleuIO USB加密狗作为串行端口。使用电容器6和@adeunis/电容器-串行插件,我们建立串行连接,发送AT命令,并实时读取响应。该...
关键字:
电容器
Android
传感器
微控制器
嵌入式系统
在这篇文章中,小编将对高频振荡器的相关内容和情况加以介绍以帮助大家增进对高频振荡器的了解程度,和小编一起来阅读以下内容吧。
关键字:
振荡器
高频振荡器
低频振荡器
今天,小编将在这篇文章中为大家带来高频振荡器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
关键字:
振荡器
高频振荡器
高频振荡器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。
关键字:
振荡器
高频振荡器
低频振荡器
经由小编的介绍,不知道你对多谐振荡器是否充满了兴趣?如果你想对它有更多的了解,不妨尝试在我们的网站里进行搜索哦。
关键字:
振荡器
多谐振荡器
今天,小编将在这篇文章中为大家带来多谐振荡器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
关键字:
振荡器
多谐振荡器
在下述的内容中,小编将会对多谐振荡器的相关消息予以报道,如果多谐振荡器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
关键字:
振荡器
多谐振荡器
在这篇文章中,小编将对多谐振荡器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。
关键字:
振荡器
多谐振荡器