当前位置:首页 > 工业控制 > 工业控制
[导读]在异步电动机数学模型的基础上,将连续信号的直接转矩控制系统离散化,并利用MATLAB/SIMULINK仿真软件对该离散系统进行仿真。通过仿真得出定子磁链、转矩、定子电流的仿真波形,验证了直接转矩控制离散仿真系统的可行性。

1985年,德国鲁尔大学教授Depenbrock和日本学者Takahashi提出了直接转矩控制理论,由于它直接控制定子磁链空间向量和电磁转矩,使得控制系统得以简化,并且提高了快速相应能力。直接转矩控制不仅拓宽了向量控制理论,同时促进了电机现代控制技术的进一步发展。
    SIMUUNK是MATLAB提供用来对动态系统进行建模、仿真、分析的软件包。SIMULINK包含许多模块库,利用这些模块库可以很方便的进行复杂系统构建与仿真分析,为研究者提供了一个实用的仿真平台。本文对基于MATLAB/SIMULINK异步电动机的直接转矩控制离散系统仿真模型做出分析和介绍。

l 异步电机的数学模型
1.1 三相变两相的物理意义
   
原来匝数为W1的ABC三相绕组,用每相匝数为且空间位置互差90°的X、Y两相绕组替代,其中X轴与A轴夹角为θ,在X轴上ix产生的磁势应等于ABC三相电流产生的磁势在轴上的投影之和。
1.2 三相异步电机在α-β静止坐标系下的电压、磁链方程:
    电机电压方程为:


    则电压方程的矩阵形式为:

   
    式中usα、usβ、isα、isβ分别是定子在α、β轴上电压、电流分量;urα、urβ、irα、irβ分别是转子在α、β轴上的电压、电流分量;ψsα、ψsβ、ψrα、ψrβ分别是定子、转子在α、β轴的磁链;Ls、Lr、Lm分别是定子绕组、转子绕组及电机励磁电感;P为微分算子;ωr是转子的角速度。
1.3 电机的转矩方程

   
    Te为电机的电磁转矩;np为电机的极对数。
1.4 电机的运动方程

   
   
TL为负载转矩;J为电机转子和系统的转动惯量。
    根据异步电机的数学模型,利用SIMULINK的基本模块及电机模块搭建异步电机的仿真模型。

2 建立仿真模型
2.1 直接转矩控制基本原理
   
定子、转子磁链以及电磁转矩可表示为:

   
    在直接转矩控制中,当定子磁链矢量ψs快速变化时,在很短暂时间内,可认为ψr不变,因此可以通过改变外加电压矢量快速改变ψs,使定子磁链幅值|ψs|保持不变,同时控制定子磁链和转子磁链的夹角θ,由式(6)可知,控制θ,实质上是控制电磁转矩,即实现了转矩的直接控制。
    图1所示为直接转矩控制的系统框图,包括异步电机模型、转矩和磁链观测器,滞环比较器,开关矢量选择器和逆变器等部分。通过滞环比较得到调节信号,结合磁链位置信号SN和开关矢量选择表,查表获取此刻应作用于电机的电压矢量,从而实现电机的直接转矩控制。

2.2 开关电压矢量的合理选择
   
逆变器不同的开关状态可产生如图2中所示的u1~u6及u7,u8两个零矢量。基于便于控制的考虑,把定子磁链所在空间位置划分为①~⑥区间,总共六个扇区。

    其中△ψ、△T的取值是根据滞环比较器的输出来确定,即有:若|ψs|≤|ψsref|-|△ψs|,则△ψ=l;若|ψs|≥|ψsref|—|△ψs|,则△ψ=一1;若|Tc|≤|Tcref|—|△Te|,则△T=1;若|Tc|≥Tcref,则△T=0,若|Tc|≥|Tcref|-|△Tc|,则△T=一1;若|Tc|≤Tcref,则△T=0。依据图4的磁链区间划分、推理和控制经验得到在磁链所在的区间的电压输出矢量表。

2.3 磁链观测的离散仿真模型
   
磁链观测采用定子磁链的u一i模型:

   
    为了验证离散直接转矩控制的可行性,模型采用信号离散采样的方式,将电压、电流离散化,通过离散积分进行磁链观测。
    图5所示,假设t1时刻的函数值为u[n-1],t2时刻的函数值为u[n],且t1时刻和t2时刻的差Ts极度小,趋近于O,那么微元阴影部分的面积为则整个函数与时间轴围成的面积为即相当于函数U(t)关于时间t的积分。
    离散定子磁链观测原理如下:
    把定子电流、电压和磁链离散化,式(7)可写成下面的离散形式:

   
    基于上面的推导就可以将通常的连续积分改为离散信号的积分,通过改变采样时间Ts来对磁链和转矩的估计精度进行调整。

3 仿真结果
   
设置电机的仿真参数,额定电压380V,额定功率为2.5kW,极对数np=2,rs=0.435Ω,rr=0.816Ω,Ls=0.006H,Lm=0.08931H,Lr=0.006H,转动惯量J=0.089kg.m2,转矩滞环宽度为lN.m,磁链滞环宽度为0.02wb。

4 结论
   
本文通过MaUab/simulink搭建出直接转矩控制离散仿真系统,并进行仿真研究,得出定子磁链、转矩、定子电流的波形(见图7~图9)。从仿真结果来看,图7的定子磁链轨迹近似为圆形,图9的定子电流近似为正弦波形,从而验证了此离散模型的正确性。直接转矩控制离散仿真系统为直接转矩控制系统仿真提供了一种新思路,是一种有益的探索。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

摘要:以交流异步电机作为电动汽车的驱动电机,建立了异步电机的数学模型,将直接转矩控制技术运用于电动汽车驱动系统。在Matlab/Simulink平台上搭建了电动汽车用异步电机直接转矩控制系统的仿真模型,详细介绍了模型中各...

关键字: 电动汽车 异步电机 直接转矩控制

摘要:研究了异步电动机制动的工作原理,采用Matlab/Simulink仿真软件,构造了三相异步电动机能耗制动、反接制动、回馈制动的仿真模型,并对其进行了动态仿真,结果显示其仿真值与理论相一致。

关键字: 异步电动机 制动 Matlab/Simulink仿真软件

摘要:以交流异步电机作为电动汽车的驱动电机,建立了异步电机的数学模型,将直接转矩控制技术运用于电动汽车驱动系统。在Matlab/Simulink平台上搭建了电动汽车用异步电机直接转矩控制系统的仿真模型,详细介绍了模型中各...

关键字: 电动汽车 直接转矩控制 Matlab/Simulink

摘要:研究了异步电动机制动的工作原理,采用Matlab/simulink仿真软件,构造了三相异步电动机能耗制动、反接制动、回馈制动的仿真模型,并对其进行了动态仿真,结果显示其仿真值与理论相一致。

关键字: 异步电动机 制动 Matlab/simulink仿真软件

直接转矩控制(Direct torque control,简称DTC)是一种变频器控制三相马达转矩的方式。其作法是依量测到的马达电压及电流,去计算马达磁通和转矩的估测值,而在控制转矩后,也可以控制马达的速度,直接转矩控制...

关键字: 直接转矩控制 变频器 三相马达

电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

关键字: 异步电动机 感应电动机

三相异步电动机“极数”是指定子磁场磁极的个数。定子绕组的连接方式不同,可形成定子磁场的不同极数。选择电动机的极数是由负荷需要的转速来确定的。电动机的电流只跟电动机的电压、功率有关系。三相交流电机每组线圈都会产生N、S磁极...

关键字: 异步电动机 感应电动机

有很多电工朋友在日常工作当中,会遇到很多种不同类型的电动机,比如直流电机、高低压交流电机、步进电机和伺服电机等等。

关键字: 异步电动机 同步电动机

根据三相异步电动机的工作原理可知,当定子绕组通以三相交流电时,便会产生旋转磁场。在此旋转磁场中绝大部分磁通通过空气隙穿过转子,同时与定子绕组和转子绕阻相连,称为主磁通。但是还有极少一部分磁通只与定子绕组相连,它们经过空气...

关键字: 异步电动机 感应电动机

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。

关键字: 异步电动机 转差率

工业控制

13478 篇文章

关注

发布文章

编辑精选

技术子站

关闭