当前位置:首页 > 工业控制 > 工业控制
[导读]摘 要:介绍了一种基于SPI总线技术的LPC2103对LED数码管显示实现控制的方法。采用8位74HC595串并转换芯片驱动LED数码管。结合74HC595芯片的特点给出了SPI控制的驱动电路,描述了基于SPI总线主模式的74HC595芯片的数据

摘 要:介绍了一种基于SPI总线技术的LPC2103对LED数码管显示实现控制的方法。采用8位74HC595串并转换芯片驱动LED数码管。结合74HC595芯片的特点给出了SPI控制的驱动电路,描述了基于SPI总线主模式的74HC595芯片的数据传输过程,给出了相关应用程序流程图及软件实现。
    关键词: SPI总线;主模式;LPC2103;74HC595

 

    SPI( Serial Peripheral Interface) 总线是Motorola公司提出的一个同步串行外设接口, 允许MCU与各种外围器件以串行方式进行通信、数据交换。SPI可以同时发出和接收串行数据, 它只需4条线就可以完成MCU与各种外围器件的通信。一般使用的4条线为:串行时钟线SCK、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SSEL。这些外围器件可以是简单的TTL移位寄存器、复杂的LCD显示驱动器、Flash、RAM、A/D转换器、网络控制器及其他MCU等[1]
    本文给出了一种基于SPI总线的LPC2103控制外围LED显示的设计方法。利用74HC595驱动静态共阳LED数码管,使用串转并的方式实现I/O口的扩展。
1 LPC2103中的SPI功能特性
    LPC2103是一个基于支持实时仿真的16/32位ARM7 TDMI-S CPU的微控制器,内部具有2个完全独立的SPI控制器,采用全双工的数据通信方式,最大数据位速率为外设时钟Fpclk的1/8。与SPI总线接口有关的专用寄存器有:(1)SPCR控制寄存器。该寄存器包含一些可编程位来控制SPI总线的功能,而且在数据传输之前进行设定,主要有时钟相位控制、时钟极性控制、主从模式选择、字节传输移动方向及SPI中断使能;(2)SPSR状态寄存器(为只读寄存器)。用于监视SPI功能模块的状态,包括一般性功能和异常情况。主要用途是检测数据传输是否完成,通过判断SPIF位来实现,其他位用于指示异常情况;(3)SPDR数据寄存器。为SPI提供数据的发送和接收,处于主模式时,向该寄存器写入数据,将启动SPI数据传输。串行数据的发送和接收通过内部移位寄存器来实现;(4)SPCCR时钟计数器寄存器。用于设置SPI时钟分频值,SPI处于主模式时,该寄存器用于控制时钟速率,即SPI总线速率,寄存器值为1位SCK时钟所占用的PCLK周期数,并且值为偶数,必须不小于8;(5)SPINT中断标志寄存器。包含了SPI的中断标志位,由数据传输完成及发生模式错误来引发[2]
1.1 SPI电气连接
    利用SPI总线可在软件的控制下构成各种系统,如1个主MCU和几个从MCU、几个从MCU相互连接构成多主机系统(分布式系统)、1个主MCU和1个或几个从I/O设备所构成的各种系统等。在大多数应用场合, 可使用1个MCU 作为主机来控制数据,并向1个或几个从外围器件传送该数据。从器件只有在主机发命令时才能接收或发送数据。同一时刻只允许有1个主机操作总线。在数据传输过程中,总线上只能有1个主机和1个从机通信。在一次数据传输中,主机总是向从机发送1个字节数据,而从机也总是向主机发送1个字节数据[3]。图1为SPI在主模式下控制2个SPI从机的硬件连接图。

 

 

1.2 SPI数据传输
    在SPI数据传输中,SPCR控制寄存器的CPHA和CPOL位作用非常关键。CPHA为时钟相位控制,该位决定SPI传输时数据和时钟的关系,并控制从机传输的起始和结束,该位为1,时钟前沿数据输出,后沿数据采样;为0,时钟前沿数据采样,后沿数据输出。CPOL为时钟极性控制,为1时,SCK为低电平有效;为0时,SCK为高电平有效[4]
    图2为SPI的4种不同数据传输格式时序,描述的是8位数据传输。该时序图水平方向分成3部分:(1)描述SCK和SSEL信号;(2)描述CPHA为0时的MOSI和MISO信号;(3)描述CPHA为1时的MOSI和MISO信号。SSEL信号为低电平,说明SPI工作在从模式。其中,MOSI和MISO信号中的bit1~bit8表示传输的第几位数据。

 


2 74HC595扩展I/O接口电路
    SPI是一个串行输入输出的接口,使用串转并的接口芯片可以实现扩展I/O口。74HC595芯片为一种常用的8位串转并移位寄存器芯片,本系统利用74HC595来驱动静态共阳LED数码管。74HC595的主要优点:具有数据存储寄存器,在移位过程中,输出端的数据可以保持不变。这在串行速度慢的场合很有用处,数码管没有闪烁感。LPC2103工作在SPI主模式下。
    图3为74HC595逻辑图。图中,SI为串行数据输入引脚,用来连接LPC2103的MOSI功能引脚;SCK为移位寄存器的时钟输入,连接LPC2103串行时钟线SCK;为清移位寄存器引脚;RCK为锁寄存器锁存时钟引脚;即输出触发端与SSEL连接;为输出使能引脚;SQH为串行数据输出引脚,连接MISO;QA~QH引脚为并行输出。当为高电平、使能接低时,SCK产生一个上升沿,SI引脚当前电平值将在移位寄存器中左移1位,在下一个上升沿到来时移位寄存器中的所有位都会向左移1位,同时SQH引脚也会串行输出移位寄存器中的高位的值。当RCK产生上升沿时,移位寄存器的值将会被锁存到锁存器里,并从QA~QH引脚输出。

 

 


    图4为SPI接口与74HC595的连接原理图。其中QA~QH分别连接共阳LED数码管的8个段。在SPI输出1个字节的数据时,SSEL产生1个低电平,SPI主机串行地发该字节的各个位,各个位都依次被锁存在74HC595的移位寄存器内,当1个字节的数据传输完成后,SSEL由低电平变为高电平,从而使74HC595的移位寄存器的值被锁存到74HC595的锁存器并从其QA~QH引脚输出;在SPI输出1个字节数据的同时,74HC595移位寄存器之前的值也通过MISO引脚被SPI主机读回。

 

3  软件设计[5]
    软件设计包括:进行I/O口初始化,设置SPI引脚连接,启用LPC2103的SPI 0总线,设置GPIO的P0.4、P0.5、P0.6、P0.7为SPI 0总线的SCK0、MISO0、MOSI0、SSEL0特殊功能,置74HC595片选端的I/O口为输出功能。其代码如下:
    PINSEL0=0x00005500;  //设置SPI引脚连接
    PINSEL1=0x00000000;
    IODIR=HC595_CS;  //设置片选端I/O口为输出
3.1 SPI总线操作初始化
    图5为SPI总线操作流程图。使用LPC2103的SPI总线主模式下实现对74HC595的数据传输,用来驱动外围LED数码管。设置SPI时钟,在SPI主模式下,SPCCR寄存器控制SCK的频率,SPI速率为Fpclk / SPCCR。通过SPCR控制寄存器设置时钟相位、时钟极性、主模式控制、字节移动方向及SPI中断使能等。代码实现如下:

 


    Void MSpiIni(void)
    {  SPI_SPCCR = 0x52;  //设置SPI时钟分频
       SPI_SPCR  = (0<<3)|  //CPHA=0,数据再从SCK的第一时钟沿采样
               (1<<4)|   //CPOL=1,SCK为低有效
               (1<<5)|   //MSTR=1,SPI处于主模式
               (0<<6)|   //LSBF=0,SPI数据传输MSB(位7)在先
               (0<<7);   //SPIE=0,SPI中断被禁止
    }
3.2 SPI总线主模式下数据发送过程
    首先选择从机,设置片选。选择74HC595为从机,置片选端SSEL为低有效。将发送的数据写入SPDR,发送出去。等待SPIF置位,即数据发送完毕。最后可从SPDR读取收到的数据。以下为发送函数:
    uint8 MSendData(uint8 data)
    {    IOCLR=HC595_CS;   //片选端,由LPC2103指定的I/O口置位
         SPI_SPDR=data;
         while(0==(SPI_SPSR&0x80));    //等待SPIF置位,即等待数据发送完毕
         IOSET=HC595_CS;  //片选置高无效,结束发送
         return(SPI_SPDR);   //返回接收到的数据
    }
3.3 控制LED数码管主函数
    主函数使用LPC2103的SPI接口输出给74HC595,用来控制LED数码管显示。DISP_TAB[ ]为LED显示0-F字模的16进制码表。MSendData( )实现每一字节数据的发送。
    #define   HC595_CS    0x00000100         //P0.8口为74HC595的片选
    uint8 const DISP_TAB[16]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E};
    int main(void)
    {   uint8 rcv_data;
    uint8 i;
    PINSEL0=0x00005500;     //设置SPI引脚连接
    PINSEL1=0x00000000;
    IODIR=HC595_CS;             //设置LPC2103片选I/O口为输出功能
    MSpiIni( );                          //初始化SPI接口
    while(1)
    { for (i=0;i<16;i++)
         {rcv_data=MSendData(DISP_TAB[i]);   //发送显示数据
          DelayNS(50);                      //延时
        }
    }
       return(0);
 }
    基于SPI总线的数据通信技术已经广泛应用在MCU与各种外围设备的串行通信中。如存储系统、A/D转换系统、网络控制器和多MCU构成的分布式系统。本文给出了74HC595芯片驱动LED数码管显示的电路,采用SPI总线技术实现对LED显示的数据传输,方便快捷、准确性高、速度快,满足了复杂微控制系统对外围设备控制的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能
关闭
关闭