当前位置:首页 > 单片机 > 单片机
[导读]【软件中如何设置SPI的极性和相位】SPI分主设备和从设备,两者通过SPI协议通讯。而设置SPI的模式,是从设备的模式,决定了主设备的模式。所以要先去搞懂从设备的SPI是何种模式,然后再将主设备的SPI的模式,设置和从

【软件中如何设置SPI的极性和相位】SPI分主设备和从设备,两者通过SPI协议通讯。而设置SPI的模式,是从设备的模式,决定了主设备的模式。所以要先去搞懂从设备的SPI是何种模式,然后再将主设备的SPI的模式,设置和从设备相同的模式,即可正常通讯。对于从设备的SPI是什么模式,有两种:(1)固定的,有SPI从设备硬件决定的SPI从设备,具体是什么模式,相关的datasheet中会有描述,需要自己去datasheet中找到相关的描述,即:关于SPI从设备,在空闲的时候,是高电平还是低电平,即决定了CPOL是0还是1;然后再找到关于设备是在上升沿还是下降沿去采样数据,这样就是,在定了CPOL的值的前提下,对应着可以推算出CPHA是0还是1了。举例1:CC2500-Low-CostLow-Power2.4GHzRFTransceiver的datasheet中SPI的时序图是:
从图中可以看到,最开始的SCLK和结束时候的SCLK,即空闲时刻的SCLK,是低电平,推导出CPOL=0,然后可以看到数据采样的时候,即数据最中间的那一点,对应的是SCLK的第一个边沿,所以CPHA=0(此时对应的是上升沿)。举例2:SSD1289-240RGBx320TFTLCDControllerDriver的datasheet中提到:“SDIisshiftedinto8-bitshiftregisteroneveryrisingedgeofSCKintheorderofdatabit7,databit6……databit0.”意思是,数据是在上升沿采样,所以可以断定是CPOL=0,CPHA=0,或者CPOL=1,CPHA=1的模式,但是至于是哪种模式。按理来说,接下来应该再去确定SCLK空闲时候是高电平还是低电平,用以确定CPOL是0还是1,但是datasheet中没有提到这点。所以,此处,目前不太确定,是两种模式都支持,还是需要额外找证据却确定CPOL是0还是1.(2)可配置的,由软件自己设定从设备也是一个SPI控制器,4种模式都支持,此时只要自己设置为某种模式即可。然后知道了从设备的模式后,再去将SPI主设备的模式,设置为和从设备模式一样,即可。 对于如何配置SPI的CPOL和CPHA的话,不多细说,多数都是直接去写对应的SPI控制器中对应寄存器中的CPOL和CPHA那两位,写0或写1即可。举例:C8051F347中的SPI就是一个SPI的controller控制器,即支持软件配置CPOL和CPHA的值,四种模式都支持,此处C8051F347作为SPI从设备,设置了CPOL=1,CPHA=0的模式,因此,此处对应主芯片中的SPI控制器,作为Master主设备,其SPI的模式也要设置为CPOL=1,CPHA=0,即可。






【SPI的读写程序设计】文中标红的是特别注意看的地方主要是熟悉flash芯片的指令集,以及存储芯片扇区和块的理解,最重要的是擦除都是以扇区擦除的方式。


本节将利用SPI来实现对外部FLASH(W25X16)的读写,并将结果显示在TFTLCD模块上。本节分为如下几个部分:

3.17.1 SPI简介

3.17.2硬件设计

3.17.3软件设计

3.17.4下载与测试


1 SPI简介

SPI是英语Serial Peripheralinterface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,STM32也有SPI接口。

SPI接口一般使用4条线:

MISO主设备数据输入,从设备数据输出。

MOSI主设备数据输出,从设备数据输入。

SCLK时钟信号,由主设备产生。

CS从设备片选信号,由主设备控制。

SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

SPI总线四种工作方式SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设备时钟相位和极性应该一致。


不同时钟相位下的总线数据传输时序见下图:



图3.17.1.1不同时钟相位下的总线传输时序(CPHA=0/1)


STM32的SPI功能很强大,SPI时钟最多可以到18Mhz,支持DMA,可以配置为SPI协议或者I2S协议。


本节,我们将利用STM32的SPI来读取外部SPIFLASH芯片(W25X16),实现类似上节的功能。这里对SPI我们只简单介绍一下SPI的使用,STM32的SPI详细介绍请参考《STM32参考手册》第422页,22节。然后我们再介绍下SPIFLASH芯片。

这节,我们使用STM32的SPI1的主模式,下面就来看看SPI1部分的设置步骤吧,STM32的主模式配置步骤如下:

1)配置相关引脚的复用功能,使能SPI1时钟。

我们要用SPI1,第一步就要是能SPI1的时钟,SPI1的时钟通过APB2ENR的第12位来设置。其次要设置SPI1的相关引脚为复用输出,这样才会连接到SPI1上否则这些IO口还是默认的状态,也就是标准输入输出口。这里我们使用的是PA5、6、7这3个(SCK.、MISO、MOSI,CS使用软件管理方式),所以设置这三个为复用IO。

2)设置SPI1工作模式。

这一步全部是通过SPI1_CR1来设置,我们设置SPI1为主机模式,设置数据格式为8位,然后通过CPOL和CPHA位来设置SCK时钟极性及采样方式。并设置SPI1的时钟频率(最大18Mhz),以及数据的格式(MSB在前还是LSB在前)。

3)使能SPI1。

这一步通过SPI1_CR1的bit6来设置,以启动SPI1,在启动之后,我们就可以开始SPI通讯了。

SPI1的使用就介绍到这里,接下来介绍一下W25X16。W25X16是华邦公司推出的继W25X10/20/40/80(从1Mb~8Mb)后容量更大的FLASH产品,W25X16的容量为16Mb,还有容量更大的W25X32/64,ALIENTEK所选择的W25X16容量为16Mb,也就是2M字节,同AT45DB161是一样大小的。

W25X16将2M的容量分为32个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每个扇区4K个字节。W25X16的最少擦除单位为一个扇区,也就是每次必须擦除4K个字节。这样我们需要给W25X16开辟一个至少4K的缓存区,这样对SRAM要求比较高(相对于AT45DB161来说),但是它有价格及供货上的优势。

W25X16的差些周期为10000次,具有20年的数据保存期限,支持电压为2.7~3.6V,W25X16支持标准的SPI,还支持双输出的SPI,最大SPI时钟可以到75Mhz(双输出时相当于150Mhz),更多的W25X16的介绍,请参考W25X16的DATASHEET。


2硬件设计

本节实验功能简介:开机的时候先检测W25X16是否存在,然后在主循环里面用1个按键用来执行写入W25X16的操作,另外一个按键用来执行读出操作,在TFTLCD模块上显示相关信息。同时用DS0提示程序正在运行。

所要用到的硬件资源如下:

1)STM32F103RBT6。

2)DS0(外部LED0)。

3)KEY0和KEY2。

4)TFTLCD液晶模块。

5)W25X16。

前面4部分的资源,我们前面已经介绍了,请大家参考相关章节。这里只介绍W25X16与STM32的连接,板上的W25X16是直接连在STM32F103RBT6上的,连接关系如下图:



图3.17.2.1STM32F103RBT6与W25X16连接电路图


3软件设计

打开上一节的工程,首先在HARDWARE文件夹下新建一个FLASH的文件夹和SPI的文件夹。然后新建一个flash.c和flash.h的文件保存在FLASH文件夹下,新建spi.c和spi.h的文件,保存在SPI文件夹下,并将这两个文件夹加入头文件包含路径。

打开spi.c文件,输入如下代码:

#include"spi.h"

//SPI口初始化

//这里针是对SPI1的初始化

voidSPIx_Init(void)

{

RCC->APB2ENR"=1<<2; //PORTA时钟使能

RCC->APB2ENR|=1<<12; //SPI1时钟使能

//这里只针对SPI口初始化

GPIOA->CRL&=0X000FFFFF;

GPIOA->CRL|=0XBBB00000;//PA5.6.7复用

GPIOA->ODR|=0X7<<5; //PA5.6.7上拉

SPI1->CR1|=0<<10;//全双工模式

SPI1->CR1|=1<<9; //软件nss管理

SPI1->CR1|=1<<8;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭