当前位置:首页 > 公众号精选 > 亚德诺半导体
[导读]大多数ADC、DAC和其他混合信号器件数据手册是针对单个PCB讨论接地,通常是制造商自己的评估板。将这些原理应用于多卡或多ADC/DAC系统时,就会让人感觉困惑茫然。通常建议将PCB接地层分为模拟层和数字层,并将转换器的 AGND 和 DGND 引脚连接在一起,并且在同一点连接模拟接地层和数字接地层。


混合信号接地的困惑根源

大多数ADC、DAC和其他混合信号器件数据手册是针对单个PCB讨论接地,通常是制造商自己的评估板。将这些原理应用于多卡或多ADC/DAC系统时,就会让人感觉困惑茫然。通常建议将PCB接地层分为模拟层和数字层,并将转换器的 AGND 和 DGND 引脚连接在一起,并且在同一点连接模拟接地层和数字接地层,如图 1 所示。


图 1. 混合信号 IC 接地:单个 PCB(典型评估/测试板)


这样就基本在混合信号器件上产生了系统“星型”接地。所有高噪声数字电流通过数字电源流入数字接地层,再返回数字电源;与电路板敏感的模拟部分隔离开。系统星型接地结构出现在混合信号器件中模拟和数字接地层连接在一起的位置。


该方法一般用于具有单个 PCB 和单个 ADC/DAC 的简单系统,不适合多卡混合信号系统。在不同PCB(甚至在相同 PCB 上)上具有数个ADC 或 DAC的系统中,模拟和数字接地层在多个点连接,使得建立接地环路成为可能,而单点“星型”接地系统则不可能。鉴于以上原因,此接地方法不适用于多卡系统,上述方法应当用于具有低数字电流的混合信号IC。


具有低数字电流的混合信号IC的接地和去耦

敏感的模拟元件,例如放大器和基准电压源,必须参考和去耦至模拟接地层。具有低数字电流的 ADC 和 DAC(和其他混合信号 IC)一般应视为模拟元件,同样接地并去耦至模拟接地层。乍看之下,这一要求似乎有些矛盾,因为转换器具有模拟和数字接口,且通常有指定为模拟接地(AGND)和数字接地(DGND)的引脚。图 2 有助于解释这一两难问题。



图 2. 具有低内部数字电流的混合信号 IC 的正确接地


同时具有模拟和数字电路的 IC(例如 ADC 或 DAC)内部,接地通常保持独立,以免将数字信号耦合至模拟电路内。图 2 显示了一个简单的转换器模型。将芯片焊盘连接到封装引脚难免产生线焊电感和电阻,IC 设计人员对此是无能为力的,心中清楚即可。快速变化的数字电流在 B 点产生电压,且必然会通过杂散电容 CSTRAY耦合至模拟电路的 A 点。此外,IC 封装的每对相邻引脚间约有 0.2 pF的杂散电容,同样无法避免!IC 设计人员的任务是排除此影响让芯片正常工作。


不过,为了防止进一步耦合,AGND 和 DGND 应通过最短的引线在外部连在一起,并接到模拟接地层。DGND 连接内的任何额外阻抗将在 B点产生更多数字噪声;继而使更多数字噪声通过杂散电容耦合至模拟电路。请注意,将 DGND 连接到数字接地层会在 AGND 和 DGND 引脚两端施加VNOISE,带来严重问题!


“DGND”名称表示此引脚连接到 IC 的数字地,但并不意味着此引脚必须连接到系统的数字地。可以更准确地将其称为 IC 的内部“数字回路”。


这种安排确实可能给模拟接地层带来少量数字噪声,但这些电流非常小,只要确保转换器输出不会驱动较大扇出(通常不会如此设计)就能降至最低。将转换器数字端口上的扇出降至最低(也意味着电流更低),还能让转换器逻辑转换波形少受振铃影响,尽可能减少数字开关电流,从而减少至转换器模拟端口的耦合。通过插入小型有损铁氧体磁珠,如图 2 所示,逻辑电源引脚 pin (VD)可进一步与模拟电源隔离。转换器的内部瞬态数字电流将在小环路内流动,从 VD经去耦电容到达 DGND (此路径用图中红线表示)。因此瞬态数字电流不会出现在外部模拟接地层上,而是局限于环路内。VD 引脚去耦电容应尽可能靠近转换器安装,以便将寄生电感降至最低。去耦电容应为低电感陶瓷型,通常介于 0.01 μF (10 nF)和 0.1 μF (100 nF) 之间。


再强调一次,没有任何一种接地方案适用于所有应用。但是,通过了解各个选项和提前进行规则,可以最大程度地减少问题。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计

为增进大家对电源的认识,本文将对电源的分类以及电源设计的一些相关问题予以介绍。

关键字: 电源 指数 电源设计

泰克在工程社区听到了许多工程师的抱怨,因此开发了TMT4裕度测试解决方案,提高了测试的协作性和易用性。

关键字: 电源设计 测试测量

反激拓扑的前身是 Buck-Boost 变换器,只不过就是在 Buck-Boost 变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的 Buck-Boost...

关键字: 反激电源 电源设计
关闭
关闭