关闭

功率器件

所属频道 电源
  • 原创

    合理地使用轨到轨运算放大器

    低压和便携式应用需要轨到轨 I/O 运算放大器来获得动态范围和最大输出信号摆幅。这些运算放大器接受两个电源轨 200 mV 范围内的输入电压,其输出电压摆幅在电源轨 50 mV 范围内。轨到轨 I/O 运算放大器会引入独特的错误,了解这些错误有助于最大限度地减少它们并优化性能。

  • 原创

    如何阅读半导体数据表,第一部分

    半导体数据表在过去几年中发生了很大变化,包括从 10 页增长到 100 页。问题是数据表包含几乎太多的数据,忙碌的工程师没有足够的时间来关注所有这些信息。这种情况要求设计工程师快速评估数据表信息,以下策略可以帮助工程师在最短的时间内达到要点。

  • 原创

    如何阅读半导体数据表,第二部分

    仔细研究文档表 1和表2 中的电气特性,因为设计数据来自它们。表格注释指定了测试温度和电源电压。它们包括注释,“除非另有说明”,以确保个别测试条件取代一般注释。测试温度通常是 IC 周围自由空气的温度,通常为 25°C,但功率 IC 通常将测试温度指定为外壳温度。

  • 原创

    如何阅读半导体数据表,第三部分

    参数曲线是确定一个参数如何与另一个参数、温度、频率或电源变化相互作用的有价值的工具。显示了 TLV278X 运算放大器的 CMRR 与频率曲线。

  • 原创

    是什么导致半导体器件发生故障?第一部分

    多年来,用户要求更可靠的电子设备。与此同时,电子设备变得越来越复杂。这两个因素的结合强调了确保长期无故障运行的必要性。故障分析可以提供对故障机制和原因的宝贵见解,进而改进组件和产品的设计,从而有助于提高电子系统的可靠性。

  • 原创

    是什么导致半导体器件发生故障?第二部分

    半导体设备应在设备制造商规定的电压、电流和功率限制范围内运行。这些限制适用于设备的电源和 I/O 连接。当设备在此“安全工作区”(SOA) 之外运行时,电气过应力 (EOS) 会导致内部电压击穿,进而导致内部损坏,从而毁坏设备。如果 EOS 产生更高的电流,则设备也会过热,从而导致故障原因增加热过应力。增加的热应力导致二次模式故障,之所以命名是因为热应力来自主 EOS。

  • 原创

    驯服全差分电路

    制造商为需要差分驱动电压的设计制造全差分放大器。示例应用包括高速 ADC 输入、高速模拟信号传输、高频噪声抑制和低失真应用。大多数全差分放大器应用都是高频应用;全差分放大器的增益带宽在数千兆赫兹范围内。因此,全差分放大器设计需要了解高频印刷电路板的布局和结构。

  • 原创

    在 48V 通信 DC-DC 转换器设计中使用 GaN 晶体管

    随着世界对数据的需求增长看似失控,一个真正的问题出现在必须处理这种流量的数据通信系统中。充满通信处理和存储处理的数据中心和基站已经将其电力基础设施、冷却和能源存储扩展到了极限。然而,随着数据流量的持续增长,安装了更高密度的通信和数据处理板,从而消耗更多功率。2012 年,网络和数据中心的通信耗电量占 ICT 行业总耗电量的 35%。到 2017 年,网络和数据中心将使用 50% 的电力,并将继续增长。

  • 原创

    选择正确的检测电阻布局

    使用热插拔控制器进行设计时,可能会出现很多问题。例如,热插拔可能会在意外的电流值下跳闸,或者电流监视器可能会报告不准确的测量值。因此,依赖热插拔保护的系统的完整性现在可能会受到威胁。通过使用四个焊盘优化检测电阻器布局有助于避免故障并创建稳健的热插拔设计。

  • 原创

    GaN 器件如何提高谐振转换器效率

    随着硅接近其物理极限,电子制造商正在转向非传统的半导体材料,尤其是宽带隙(WBG)半导体,例如碳化硅(SiC)、氮化镓(GaN)等。因为宽带隙材料具有相对宽的带隙(与常用的硅相比),所以宽带隙器件可以在高电压,高温和高频率下工作。宽带隙器件可以提高能效和延长电池寿命,这有助于推动宽带隙半导体的市场。

  • 原创

    我们的 IGBT 栅极驱动器电源是否经过优化?- 第1部分

    我们中的许多人都熟悉低功率直流电机,因为我们在日常生活中随处可见它们。我们可能看不到所有更大的交流工业电机在幕后工作,以自动化我们的汽车组装或提升我们每天乘坐的电梯。这些大功率电机由具有不同要求和更高电流的电子设备驱动。在本文的第 1 部分中,我们将讨论用于控制三相交流电机大电流的绝缘栅双极晶体管 (IGBT)的理论和要求。在第 2 部分中,我们将讨论隔离要求和正确计算 IGBT 驱动功率量。

  • 原创

    我们的 IGBT 栅极驱动器电源是否经过优化?- 第2部分

    在本系列的第 1 部分中,我们讨论了如何正确选择 IGBT 的控制电压。这一次,您将了解有关隔离要求以及如何计算正确的IGBT 驱动功率的更多信息。 IGBT驱动电路的设计包括上下桥绝缘水平的选择、驱动电压水平的确定、驱动芯片驱动功率的确定、短路保护电路等等。今天我们重点讨论一下驱动电流以及功率的确定,也就是说如何确定一个驱动芯片电流能力是不是可以驱动一个特定型号的IGBT,如果不能驱动该如何增强驱动输出能力。

    电源
    2022-07-29
  • 原创

    为我们的高压和高速通讯等应用选择合适的隔离器件

    如果我们是电源设计人员,那么在处理高压开关转换器时,隔离通常是一个问题。在高压初级电压和次级低压之间使用某种形式的隔离是很常见的。反馈控制环路经常穿越隔离边界,因此脉冲变压器或光耦合器是常用的解决方案,因为环路带宽非常低——通常小于 1 MHz。

  • 原创

    GaN 将射频应用推向新的阶段

    氮化镓 (GaN) 是一种宽带隙半导体,可满足高功率和射频应用日益增长的需求。GaN 的带隙是传统硅的三倍以上,它允许功率器件在比硅更高的温度和电压下工作,而不会破坏或降低其性能和可靠性。此外,其极低的导通电阻使 GaN 能够提供非常高的电流和射频功率密度,在雷达、功率转换器和功率放大器等高功率射频系统中得到应用。

  • 原创

    IGBT 基础教程:第 1 部分如何选择 IGBT

    IGBT全称叫绝缘栅双极型晶体管,是一种复合型结构器件,它结合了MOS晶体管和BJT双极型晶体管的优点,在电压电流转换,电能输出领域用的非常多,特别是在高压大电流领域,IGBT占主导地位,是人类控制电能,利用电能的核心半导体器件之一,这种主要应用在电子电力转换领域的半导体器件,我们统称功率半导体