当前位置:首页 > 电源 > 功率器件
[导读]随着硅接近其物理极限,电子制造商正在转向非传统的半导体材料,尤其是宽带隙(WBG)半导体,例如碳化硅(SiC)、氮化镓(GaN)等。因为宽带隙材料具有相对宽的带隙(与常用的硅相比),所以宽带隙器件可以在高电压,高温和高频率下工作。宽带隙器件可以提高能效和延长电池寿命,这有助于推动宽带隙半导体的市场。

随着硅接近其物理极限,电子制造商正在转向非传统的半导体材料,尤其是宽带隙(WBG)半导体,例如碳化硅(SiC)、氮化镓(GaN)等。因为宽带隙材料具有相对宽的带隙(与常用的硅相比),所以宽带隙器件可以在高电压,高温和高频率下工作。宽带隙器件可以提高能效和延长电池寿命,这有助于推动宽带隙半导体的市场。

虽然氮化镓和碳化硅的功率水平有一些重叠,但各自解决的功率需求是不同的。碳化硅器件提供高达1700V的电压和高电流承载能力。这使得它们很适合于汽车和机车牵引逆变器、大功率太阳能发电站和大型三相电网变流器等应用。碳化硅进入市场的时间略长,因此它有更多的选择,例如,相比目前可用的氮化镓解决方案,碳化硅支持更广泛的电压和导通电阻。

近年来,诸如氮化镓 (GaN) 和碳化硅 (SiC) 场效应晶体管 (FET) 之类的宽带隙功率器件已开始商用。与高压 (≥600V) 硅 FET 相比,GaN 和 SiC FET 通常具有更低的导通电阻 (R ds(on) )、更低的输出电容 (C oss ) 和更少/没有反向恢复电荷 (Q rr )。由于其较低的开关损耗,我们可以大大提高具有宽带隙功率器件的硬开关转换器的效率。

与硅相比,宽带隙材料的主要优点包括:

· 较低的导通电阻

· 更高的击穿电压

· 更高的热导率

· 在较高温度下运行

· 更高的可靠性

· 接近零的反向恢复时间

· 优异的高频性能

将 GaN FET 应用于谐振转换器可通过减少磁损耗来提高效率。让我们以图 1 所示的电感-电感-电容串联谐振转换器 (LLC-SRC) 为例。LLC-SRC 使用存储在谐振电感 (L r ) 中的能量对输入开关网络中的 MOSFET 输出电容器进行放电。如果在 MOSFET 栅极信号变高之前输出电容电压放电至零,则可以实现零导通损耗。

在 MOSFET 的开关瞬态期间,i Lr等于流过 L m的最大电流,如公式 1 所示:


电流 I Lm(假设在死区时间保持不变)对一个 MOSFET 的 C oss进行放电并为另一个 MOSFET 的 C oss充电。假设半桥的两个 MOSFET 的C oss相同,并且可以忽略变压器的绕组间电容,公式 2 表示可以实现零开通损耗的最大电感:


现在让我们假设我们正在使用 LLC-SRC在相同的 400V IN到 12V OUT转换规范上选择 GaN FET 和硅 FET 。TI 的LMG3410 GaN 器件具有 70mΩ 的导通电阻和 95pF 的输出电容(与能量相关)。我发现一个 70mΩ 硅 FET 具有 140pF 的输出电容。如果我们选择的匝数比为 n = 16,并且 LLC-SRC 的目标最大开关频率为 750kHz,则 L m,maxTI 的 LMG3410 为 134µH,带有 140pF 输出电容器的硅 FET 为 91µH。作为输入开关,如果使用相同的内核,带有硅 FET 的 LLC-SRC 变压器的气隙将比带有 LMG3410 的变压器宽。由于气隙较宽,变压器导线上的涡流损耗会更大。

相同的 LLC-SRC 在相同的测试条件下具有不同变压器气隙的热性能。如我们所见,具有较宽气隙的变压器上的线损比具有较窄气隙的变压器高得多。因此,使用具有较低 C oss的 GaN 器件有助于降低谐振转换器中的磁损耗。

虽然在这篇文章中中,我讨论了在谐振转换器上使用 GaN 器件的好处——更低的输出电容,从而减少变压器损耗——但 TI GaN 器件(例如 LMG3410)不仅提供低 R ds(on)和 C oss,而且还集成了多种保护功能,例如过流和过热保护。通过所有这些保护,转换器的可靠性大大提高。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭