随着先进制程下芯片规模突破百亿门级,传统时序分析工具在路径提取阶段面临计算复杂度指数级增长的问题。本文针对开源时序分析工具OpenTimer提出一种基于拓扑剪枝与动态规划的O(n)复杂度路径提取算法,通过消除冗余计算、优化数据结构及并行化处理,使大规模电路的时序路径提取效率提升两个数量级。实验表明,在3nm工艺28亿晶体管GPU设计中,该算法将关键路径分析时间从12小时缩短至42分钟,内存占用降低65%,为开源EDA工具的产业化应用提供了关键支撑。
在电子电路设计与实践中,稳压芯片是维持稳定输出电压的关键组件。然而,当我们将两个输出电压不同的稳压芯片的输出脚连接在一起时,会引发一系列复杂的物理现象和潜在风险。这一操作不仅违反了常规的电路设计原则,还可能对电路系统造成不可逆的损害。接下来,我们将从电路原理、实际影响等多个角度深入探讨这一问题。
在开关电源设计中,地弹噪声(Ground Bounce)引发的逻辑误触发、信号完整性劣化及电磁辐射问题已成为制约系统可靠性的核心瓶颈。某DC-DC转换器在12V转3.3V电路中,因布局不合理导致1%产品无法启动,经分析发现地弹噪声使COMP引脚电压跌破-0.5V阈值,触发芯片保护模式。本文提出基于分割地层与磁珠选型的量化评估准则,结合物理公式与仿真验证,实现地弹噪声抑制30dB以上的效果。
电力电子效率是指电力电子设备在转换电能过程中的效率,通常定义为输出功率与输入功率的比值。
本文中,小编将对音频处理器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。
在这篇文章中,小编将对嵌入式微处理器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。
航空航天领域对电子设备的可靠性要求极高,尤其是在复杂的太空环境中,PCB(印制电路板)面临着辐射、极端温度、湿度等多种恶劣因素的挑战。辐射是其中最为关键的影响因素之一,它可能导致PCB上的电子元件性能下降甚至失效,严重影响航天器的正常运行。抗辐照设计成为航空航天PCB设计的核心任务,其中三防漆选型与单粒子效应防护布局是两个至关重要的方面。
随着电子设备向小型化、轻量化和高性能化方向发展,对印制电路板(PCB)的集成度和性能要求日益提高。超薄芯板(芯板厚度≤50μm)因其能够显著减小PCB的厚度、提高布线密度和信号传输速度,成为高端电子产品的关键材料。然而,超薄芯板的量产工艺面临诸多挑战,其中机械钻孔微孔偏斜控制和无胶填孔技术是亟待解决的关键问题。
系统级芯片(System on Chip,简称SoC),也称片上系统,意指它是一个产品,是一个有专用目标的集成电路,其中包含完整系统并有嵌入软件的全部内容。
新能源技术在快速发展,而电池作为能量存储和转换的关键组件,在电动汽车(EV)、移动设备、储能系统等多个领域发挥着至关重要的作用。
量子计算作为未来计算技术的关键发展方向,具有巨大的潜力。超导量子芯片是量子计算的核心硬件之一,而量子计算控制板则是实现超导量子芯片精准操控的关键。在超低温环境下,超导芯片与控制板之间的互连面临着低温变形和微波串扰两大挑战。低温变形可能导致互连结构的物理特性发生变化,影响信号传输质量;微波串扰则会干扰量子比特的精确控制,降低量子计算的准确性。因此,研究超导芯片互连的低温变形补偿与微波串扰抑制技术对于量子计算控制板的设计至关重要。
深空探测任务是人类探索宇宙奥秘、拓展认知边界的重要途径。然而,深空环境充满了高能粒子辐射,如质子、重离子等,这些辐射会对探测器中的电子系统,尤其是印刷电路板(PCB)造成严重影响。高能粒子可能引发单粒子效应(SEE),导致电路逻辑错误、数据丢失甚至器件损坏。因此,开展深空探测器PCB抗辐照设计,通过屏蔽层拓扑优化与单粒子效应容错布局,对于保障探测器的可靠运行至关重要。
在当今电子产品向小型化、高性能化方向快速发展的背景下,印刷电路板(PCB)的设计与制造面临着前所未有的挑战。PCB数字孪生技术作为一种新兴的智能制造技术,通过构建虚拟的PCB模型,实现对实际生产过程的实时监控、预测和优化。可制造性设计(DFM)规则引擎能够根据PCB设计规范和制造工艺要求,对设计进行自动检查和优化。而实时生产数据映射方法则是将实际生产过程中的数据与数字孪生模型进行关联,使模型能够准确反映生产状态。本文将深入探讨PCB数字孪生构建中DFM规则引擎与实时生产数据映射方法。
在电子设备日益小型化、集成化的今天,电磁兼容(EMC)问题愈发凸显。电磁兼容正向设计旨在从产品设计初期就考虑电磁兼容性,通过合理的设计和优化,减少电磁干扰(EMI)的产生和传播,确保设备在复杂的电磁环境中能够正常工作。近场辐射是电磁干扰的重要来源之一,而PCB(印制电路板)布局参数对近场辐射频谱有着显著的影响。本文将深入探讨近场辐射频谱与PCB布局参数的敏感性分析,为电磁兼容正向设计提供理论依据和实践指导。
在高速数字通信领域,112G及以上速率的通道传输技术正逐渐成为主流。然而,随着数据速率的提升,信号在传输过程中受到的干扰和损耗也愈发严重。通道去嵌误差是影响高速信号完整性的关键因素之一,它会导致信号失真、眼图恶化,进而降低通信系统的性能。多端口TRL(Thru-Reflect-Line)校准技术和频变损耗补偿模型为抑制112G+通道去嵌误差提供了有效的解决方案。