当前位置:首页 > 电源 > 数字电源
[导读]摘要:提出了一类学习型遥控器的设计与实现,并对其工作原理、软硬件进行简单的介绍,详细概述软件中红外遥控编码学习的实现过程。该红外遥控器采用测量脉冲宽度的原理,复制其红外脉冲信号进行自学习,以软件形式实

摘要:提出了一类学习型遥控器的设计与实现,并对其工作原理、软硬件进行简单的介绍,详细概述软件中红外遥控编码学习的实现过程。该红外遥控器采用测量脉冲宽度的原理,复制其红外脉冲信号进行自学习,以软件形式实现38 kHz载波,最后成功完成了对其他遥控器的学习。该装置可以代替各种不同的遥控器控制家用电器。
关键词:红外遥控器;自学习;软件载波;红外脉冲信号


0 引 言
    红外线遥控是目前使用最广泛的一种通信和遥控方式,由于其具有结构简单、体积小、功耗低、功能强、成本低等特点,因而广泛应用于彩电、空调机、CD/VCD、录像机家用电器设备及其工业控制中。随着现在人们生活中家电日益增加的需要,使用红外遥控器也越来越频繁。因其各种红外遥控器编码格式不同,使得各种红外遥控器不能兼容。经常需要更换遥控器,这也给人们生活带来了不便。
    目前国内学习型遥控器大多采用复制遥控器红外波形达到学习目的,其方法简单,实现起来较方便。但其采用专用遥控集成的芯片,导致设计复杂,成本高,并且遥控器的红外信号形成都是采用红外线遥控发射芯片产生,其集成度高,但价格昂贵。
    在此介绍一种基于以AT89S52为核心的学习型红外遥控器,通过测量红外一体化接收头输出信号,并原样地记录其输出脉冲宽度,然后保存在E2PROM,最后利用单片定时器中断产生38 kHz载波信号,以软件代替了硬件,节约了资源。该学习型红外遥控器能成功地学习各种红外遥控设备的编码,并通过38 kHz载波发送学习到的记忆信号。实现了对各种各样红外遥控的学习,从而变成了真正的自学习遥控器。


l 学习型红外遥控器系统
1.1 学习型红外遥控器的原理
    从家用万能学习型红外遥控一般原理出发,其可以分为2类:固定码式学习遥控器和波形拷贝式学习遥控器。前者,主要通过收集各种不同种类的遥控器信号,然后分而治之。这种学习型遥控器对硬件要求相对简单,控制器的工作频率不高,存储容量大,其缺点是对未知遥控器无效。后者,主要是把原始遥控器所发出的信号进行完全拷贝,而不管遥控器是什么格式,进行适当的压缩后,存储在ROM存储器中,当发射时,只需将储存器中读出的遥控编码,还原成原始信号,便完成了学习功能。此学习型遥控器对MCU的主频要求高,RAM要求大,其优点是对任何一种红外遥控器可以进行学习。下面主要以第二种方法进行设计。
1.2 学习型红外遥控器基本硬件组成
    学习型红外遥控器由单片机、红外发射电路、红外一体化接收头、E2PROM存储电路,矩阵键盘及LED指示灯构成,如图1所示。单片机AT89S52构成红外遥控的处理器,其数据存储器RAM(258 B)用来存储学习过程中编码信号的脉冲宽度;红外发射电路:用遥控脉冲信号调制38 kHz方波,经过三极管放大后,驱动红外发光二极管,其中38 kHz载波由AT89S52定时器TO产生。红外一体化接收头:红外接收头输出的信号经过检波、整形、放大、解调38 kHz载波信号,其输出信号为TTL高低电平。外接E2PROM存储器:存放学习到的高低电平信号的脉宽值。

1.3 系统软件设计
    学习型遥控器的设计性能及实现与其软件设计编写具有密切的关系,特别是码宽计数的采集周期及计数器采用的位数都关系到能否精确采集到遥控编码信号。编码宽度计数的采样周期在编程中须经过多次实验测试才能决定。该设计读码采样周期大约为12μs。读遥控编码的计数器采用16位计数器,采样时间在0~786.432 ms之间。其值保存在设定的数据存储器中,然后写入到外部E2PROM存储器中,发射过程再从外部的E2PROM存储器读出,通过38 kHz载波发送编码信号。


2 红外遥控编码学习与软件载波的发射
2.1 红外遥控信号编码结构分析
    红外遥控器发射的遥控编码脉冲由起始码、系统码、功能码、功能码的反码组成,如图2所示。起始码是1个遥控码的起始部分,由1个高电平和1个低电平组成,作为接收数据的准备脉冲。这些编码是经38 kHz的载波脉冲调制后发射出去。

    通过分析大量不同类型的红外遥控码波形,遥控码的数据帧间歇宽度均为10 ms以上,起始码的高电平均为5 ms以上,通常为9 ms左右。编码位在10μs~5 ms之间,在设计中,只考虑遥控器发射信号的高低电平宽度,不考虑其编码方式,以简化设计。
2.2 红外遥控信号编码学习软件设计
    一般红外遥控器的的红外信号都是通过38~40kHz(周期大约为26.3μs)进行载波调制而成的,经过载波后信号的脉冲宽度与单片机的指令周期时间(12 MHz晶振的指令周期为1μs)数量级差不多。如果直接记录载波信号的脉冲宽度,这样误差很大,必须对载波信号进行解调后,方可记录此时遥控编码信号的脉冲宽度。[!--empirenews.page--]
    在设计中采用计数器对信号高低电平计时的方法来采集数据并保存。当系统识别到起始码的低电平时,系统启动设计的采集信号对低电平进行采集,同时计数器开始计数,当起始码的低电平结束时,并保存计数器此时的值,记录下起始码的低电平信号脉冲宽度值。然后依次保存采集到的编码信号脉冲宽度值,如果采集到编码信号位数大于设定值M(程序中设定值),就认为编码采集已经结束,学习子程序结束,如图3所示:

2.3 红外遥控信号的发射
    由软件实现遥控信号的载波合成,用定时中断0产生38 kHz的载波信号,用学习到的遥控编码信号的低电平去控制载波的输出,此时定时器O定时长度由相应的遥控信号低电平宽度计数值确定,即如果需发射的遥控信号为高电平时,关定时中断O;如果为低电平,则开定时中断0。输出38 kHz载波信号到红外发射控制脚(P3.7),从而实现遥控信号的脉宽调制发射。不考虑红外信号的编码方式,只采集其高低电平宽度的方法,如图4所示。发射时并不需要用到38 kHz载波电路,而是采用以单片机的定时器TO产生载波,程序代码如下所示:

   

3 结 语
    该次设计中红外遥控器,可以准确采集到红外编码脉冲信号,并将原始的红外编码信号保存,发送,能成功学习各种不同家用红外遥控器,对各种家用红外遥控器进行控制,解决了家庭用户众多遥控器的烦劳。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年5月13日 /美通社/ -- 5月8日,浦东新区国资委组织陆家嘴集团等9家区属企业与立邦中国召开合作交流会,旨在贯彻落实浦东新区区委、区政府工作要求,进一步放大进博会溢出带动效应,持续扩大区属企业与进博会重...

关键字: BSP 数字化 自动化立体仓库 智慧园区

上海2024年5月13日 /美通社/ -- 在数字化时代,高效的税务管理和ERP系统成为企业发展的关键。为了满足这一需求商应信息科技与Exact Software 易科软件就金四全电票税系统与ERP系统集成及商务合作建立...

关键字: AC 软件 BSP 数字化

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度

上海2024年5月13日 /美通社/ -- CONNECT 2 是更加用户友好的声卡,仅需轻点几下,它就能为人声和乐器的录制增添异彩。触控面板触感舒适、控制精准、一目了然。所有输入输出信号均可独立静音。自动设置功能通过内...

关键字: NEC 声卡 控制 软件

2023/24 财年收入降至 15.50 亿欧元(上一年同期:17.91 亿欧元) 调整后息税折旧摊销前利润率为 24.8% 居林和莱奥本的半导体封装载板生产将于 2024/25 财年末开始 2024/...

关键字: BSP 半导体封装 印制电路板 汽车

上海2024年5月14日 /美通社/ -- 固特异 SightLine 智能轮胎技术解决方案荣获中国电子行业主流媒体《中国电子报》颁发的 2024 汽车芯片优秀产品奖。本次获奖是对固特异研发成果的高度认可。固特异致力于引...

关键字: 汽车芯片 轮胎 BSP SI

央视《今日说法》栏目近期报道了一名90后程序员通过开发非法视频搬运软件在不到一年的时间里获利超700万,最终获刑的案例。

关键字: 程序员 软件

慕尼黑2024年5月9日 /美通社/ -- TÜV南德意志集团(以下简称"TÜV南德")持续保障安全、可靠及可持续发展。作为全球化的服务提供商,TÜV南德2023年全年营收达约31亿欧元,首次突破30亿欧元大关,同比增长...

关键字: BSP 可持续发展 数字化 人工智能

凭借深度学习技术和SmartBid产品,百度国际MediaGo获得美国商业奖认可 旧金山2024年5月6日 /美通社/ -- 第22届美国商业奖(American Business Award®)近日发布获奖名...

关键字: MEDIA GO SMART BSP

上海2024年4月17日 /美通社/ -- 在2024 F1中国站即将拉开帷幕之际,高端全合成润滑油品牌美孚1号今日举办了品牌50周年庆祝活动。三届F1年度车手总冠军马克斯•维斯塔潘也亲临现场,共同庆祝这一里程...

关键字: BSP 汽车制造 行业标准 产品系列
关闭
关闭