当前位置:首页 > 电源 > 数字电源
[导读]TMS320F2812是主频最高可达150 MHz的32位高性能数字信号处理器(DSP),内部集成了ADC转换模块。ADC模块是一个12位、具有流水线结构的模数转换器,内置双采样保持器(S/H),可多路选择16通道输入,快速转换时间运行

TMS320F2812是主频最高可达150 MHz的32位高性能数字信号处理器(DSP),内部集成了ADC转换模块。ADC模块是一个12位、具有流水线结构的模数转换器,内置双采样保持器(S/H),可多路选择16通道输入,快速转换时间运行在25 MHz、ADC时钟或12.5 Msps,16个转换结果寄存器可工作于连续自动排序模式或启动/停止模式。

在现代电子系统中,作为模拟系统与数字系统接口的关键部件,模数转换器(ADC)已经成为一个相当重要的电路单元,用于控制回路中的数据采集。在实际使用中,发现该ADC的转换结果误差较大,如果直接将此转换结果用于控制回路,必然会降低控制精度。为了克服这个缺点,提高其转换精度,笔者在进行了大量实验后,提出一种用于提高TMS320F2812ADC精度的方法,使得ADC精度得到有效提高。

1 ADC模块误差的定义及影响分析

1.1 误差定义

常用的A/D转换器主要存在:失调误差、增益误差和线性误差。这里主要讨论失调误差和增益误差。理想情况下,ADC模块转换方程为y=x×mi,式中x=输入计数值 =输入电压×4095/3;y=输出计数值。在实际中,A/D转换模块的各种误差是不可避免的,这里定义具有增益误差和失调误差的ADC模块的转换方程为y=x×ma±b,式中ma为实际增益,b为失调误差。通过对F2812的ADC信号采集进行多次测量后,发现ADC增益误差一般在5%以内,即0.95


图1理想ADC转换与实际ADC转换

1.2 影响分析

在计算机测控系统中,对象数据的采集一般包含两种基本物理量:模拟量和数字量。对于数字量计算机可以直接读取,而对于模拟量只有通过转换成数字量才能被计算机所接受,因此要实现对模拟量准确的采集及处理,模数转换的精度和准确率必须满足一定的要求。由于F2812的ADC具有一定增益误差的偏移误差,所以很容易造成系统的误操作。下面分析两种误差对线性电压输入及A/D转换结果的影响。

F2812用户手册提供的ADC模块输入模拟电压为0~3 V,而实际使用中由于存在增益误差和偏移误差,其线性输入被减小,分析如表1所列。



下面以y=x×1.05+80为例介绍各项值的计算。当输入为0时,输出为80,由于ADC的最大输出值为4095,则由式y=x×1.05+80求得输入最大电压值为2.8013。 因此,交流输入电压范围为1.4007±1.4007,此时有效位数N=ln4015/ln2=11.971,mV/计数位=2.8013/4015=0?6977,其余项计算同上。表1中的最后一行显示了ADC操作的安全参数,其有效位数减少为11.865位,mV/计数位从0.7326增加为0.7345,这将会使转换结果减少0.2%。

在实际应用中,所采集的信号经常为双极型信号,因此信号在送至ADC之前需要添加转换电路,将双极型信号转化为单极型信号。典型的转换电路如图2所示。对于ADC模块,考虑到增益误差和失调误差对输入范围的影响,转换电路需要调整为如图3所示的电路。在图3中,输入增益误差的参考范围已经改变。

对于双极性输入,其0 V输入的增益误差对应单极性输入的1.4315V的增益误差,因此,原有ADC的增益误差和失调误差被增大了。例如,如果ADC的增益误差为5%,失调误差为2%,则其双极性的增益误差计算如下:双极性输入x′= 0.0000 V,单极性的ADC输入电压x = 1.4315 V,其理想的转换值为ye=1.4315×4095/3=1954,而由ya=1954×1.05+80计算得实际转换值,则双极性增益误差为ya-ye=2132-1954=178(9.1%误差)。通过计算可以看出,ADC的误差大大增加,因此要使用ADC进行数据采集,就必须对ADC进行校正,提高其转换精度。



图2理想情况下的电压转换电路

[!--empirenews.page--]

图3校正后的电压转换电路

2 ADC校正

2.1校正方法

通过以上分析可以看出,F2812的ADC转换精度较差的主要原因是存在增益误差和失调误差,因此要提高转换精度就必须对两种误差进行补偿。对于ADC模块采取了如下方法对其进行校正。

选用ADC的任意两个通道作为参考输入通道,并分别提供给它们已知的直流参考电压作为输入(两个电压不能相同),通过读取相应的结果寄存器获取转换值,利用两组输入输出值求得ADC模块的校正增益和校正失调,然后利用这两个值对其他通道的转换数据进行补偿,从而提高了ADC模块转换的准确度。图1示出了如何利用方程获取ADC的校正增益和校正失调。具体计算过程如下:

① 获取已知输入参考电压信号的转换值yL和yh。

② 利用方程y=x×ma+b及已知的参考值(xL,yL)和(xH,yH)计算实际增益及失调误差:

实际增益ma=(yH-yL)/(xH-xL);

失调误差 b="yL" -xL×ma。

③ 定义输入x=y×CalGain-CalOffset,则由方程y=x×ma+b得校正增益CalGain=1/ma=(xH-xL)/(yH -yL),校正失调CalOffset=b/ma=yL/ma-xL。

④ 将所求的校正增益及校正失调应用于其他测量通道,对ADC转换结果进行校正。

上述即为实现ADC校正的全过程,通过使用这种方法,ADC的转换精度有很大提高。由于这种方法是通过某个通道的误差去修正其他通道的误差,因此要采用这种方法,必须保证通道间具有较小的通道误差。对F2812ADC转换模块,由于其通道间的增益及失调误差均在0.2%以内,所以可以采用这种方法对其进行校正。

2.2 软件实现

与一般的ADC转换程序相比,带校正的ADC转换程序需要另外增加两个程序段:校正值的计算以及利用校正值对ADC进行处理。为了方便操作及转换结果获取,实现中定义了结构体变量ADC?CALIBRATION?VARS,用来保存ADC转换后的各种数据。另外,提高程序的通用性,采样的方式、参考电压值及高低电压理想的转换值均在ADC转换头文件ADCCalibration.h中定义。ADC?CALIBRATION?VARS定义如下:

typedefstruct{

Uint*RefHighChAddr;//参考高电压所连通道地址

Uint*RefHighChAddr;//参考低电压所连通道地址

Uint*ChoAddr;//0通道地址

UintAvg_RefHighActualCount;//参考高电压实际转换值

UintAvg_RefHighActualCount;//参考低电压实际转换值

UintRefHighIdealCount;//参考高电压理想转换值

UintRefLowCount;//参考低电压实际转换值

UintCalGain;//校正增益

UintCalOffset;//校正失调

//校正通道的转换值

UintCh0;

UintCh16;

}ADC CALIBRATION VARS;

整个A/D转换任务由中断函数intADC()和主函数ADCCalibration()构成。中断函数主要用于转换数据的读取,而校正参数计算及各通道转换结果的修正在主函数完成。校正完后,将结果保存到所定义的结构体变量中。此处,对ADC的校正采用单采样单校正的处理方法,当然也可以采用多采样单校正的处理方法,但是为了提高精度,如果设计系统开支允许,建议最好使用单采样单校正的方法,以提高ADC精度

2.3实验结果

笔者在自己所使用的F2812系统上进行了实验,选用1 V和2 V作为参考电压,选用通道A6和A7作为参考通道,通过对0 V、0.5 V、1.5 V、2.5 V校正前后的数据进行比较,发现采用上述校正方法后,ADC的转换准确度明显得到改善,比较结果如表2所列。



注:由参考电压计算得:CalGain=0.965;CalOffset=6.757。

表2中所给出的数据只是笔者进行大量实验后所得数据的一组,实验证明通过校正后ADC的误差能被控制在0.5%以内,这对大多数测控系统来说已满足要求,对于转换精度要求更高的系统,可以采用外扩A/D转换器。

结语

A/D转换器是数据采集电路的核心部件,其良好的精度与准确性是提高数据采集电路性能的关键。TMS320F2812作为TI公司推出的一款集微控制器及数字信号处理器于一身的32位处理器,以其运行速度高和强大的处理功能得到广泛应用,而对其ADC模块精度的提高,将进一步提高其在控制领域中的应用。本文提出的用于提高ADC模块精度的校正算法,经实际应用证明实用可行。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

阿布扎比和沙特正在权衡,是否在瑞信(Credit Suisse)股价低迷之际,对该行的投资银行和其他业务进行投资。阿联酋和沙特在分别探索通过各自的主权基金,例如阿布扎比穆巴达拉发展公司和沙特公共投资基金(PIF)进行潜在...

关键字: MICHAEL UI SE PI

瑞士第二大银行瑞士信贷(Credit Suisse)正在寻找一个外部投资者,有意让它对剥离后的投行业务持有部分股权,以提供资本,从而帮助公司聘用并留住人才,剥离后的这些业务将被打造成一家类似于精品投行的新公司。该公司有可...

关键字: ST FIR UI SE

新泽西州皮斯卡托威 2022年9月23日 /美通社/ -- 致力于推动技术进步、造福人类的全球最大专业技术组织IEEE今天宣布,Sophia Muirhead将成为...

关键字: IEEE UI AD TE

(全球TMT2022年9月9日讯)绘王推出第一代Huion Note及新款数位板Inspiroy Dial 2;Redmi推出手机新品Redmi K50至尊版;技嘉科技推出完善4K电竞显示器方案;Tronsmart推出...

关键字: SMART 蓝牙音箱 UI TE

(全球TMT2022年8月31日讯)百度发布2022年第二季度财报。季度总营收为296亿元(约44.3亿美元),与上年同期相比下滑5%。归属于百度的净利润为36亿元。不按美国通用会计准则,归属于百度的净利润为55亿元。...

关键字: 惠普 IO UI 边缘计算

纽约2022年8月31日 /美通社/ -- 2022年8月31日,致力于设计和制造数位板、数位屏及相关配件的绘王(Huion),(在中国深圳)推出第一代Huion Note。...

关键字: UI TE IO SCR

纽约, Aug. 02, 2022 (GLOBE NEWSWIRE) -- 混合基础设施解决方案和托管服务领先提供商之一NYI通过增加原由Equinix拥有的空间,扩展其60 Hudson Street的运营场所。此次扩...

关键字: ST DSO SYSTEMS UI

拓展全新营收模式与市场赛道 北京2022年7月25日 /美通社/ -- 箩筐技术公司(股票代码 LKCO)(以下简称"箩筐"或"公司"),是全球技术领先的时空智能大数据服务公司,...

关键字: 自动驾驶 智能网联 BSP UI

勃林格殷格翰中国马业务正式启航 上海2022年7月20日 /美通社/ -- 动物保健全球领导企业勃林格殷格翰宣布骏卫保®(奥美拉唑内服糊剂,英文商品名:GastroGard ™ )正式在华上市。作为动...

关键字: BSP FDA UI AN

(全球TMT2022年6月29日讯)面向未来的"新领"理念以及"新领"职业人才培养项目无疑十分契合当下中国进一步加强职业教育人才培养的大方向。2020年9月,IBM 中国携手北京领先的职业院校——首钢技师学院、首钢工学...

关键字: IBM 数字化 UI SKILLS

数字电源

15504 篇文章

关注

发布文章

编辑精选

技术子站

关闭