当前位置:首页 > 电源 > 数字电源
[导读]摘要:为提高高压直流电源效率,降低其体积和重量,这里介绍了一种基于LCC谐振变换器的高压直流电源设计方法。结合移相脉宽调制(PWM)和脉冲频率调制(PFM)方法,实现变换器在全负载范围内的软开关。首先分析了LCC电路

摘要:为提高高压直流电源效率,降低其体积和重量,这里介绍了一种基于LCC谐振变换器的高压直流电源设计方法。结合移相脉宽调制(PWM)和脉冲频率调制(PFM)方法,实现变换器在全负载范围内的软开关。首先分析了LCC电路的工作原理,并采用基波近似法进行数学建模,在此基础上,给出不同负载时频率、占空比与电压增益的关系曲线,为设计LCC谐振变换器提供理论依据。最后通过一台峰值电压35 kV,额定功率7 kW的电源样机验证了设计的正确性,系统采用闭环控制,提高了输出电压的精度。

关键词:电源;高压直流;谐振变换器;软开关

1 引言

高频高压变压器是高压直流电源设计的难点,经过分析,如何减小变压器的分布参数是高频高压电源设计的关键。此处通过引入谐振,将变压器分布参数作为谐振元件的一部分,实现开关管的软开关,减小开关损耗,提高开关频率,从而减小变换器的体积。

谐振变换器有串联、并联和串并联3种拓扑。串并联谐振变换器,又称LCC谐振变换器,结合了前两种拓扑的优点,在合理设计参数的前提下,可使电源在输入电压范围变化很大,输出空载到满载的条件下,仍然保持很高的效率。LCC谐振变换器主要有移相PWM和PFM两种控制方法。这里采用PWM和PFM结合的控制策略,在频率变化范围不大,负载电压恒定的前提下,保证变换器从空载到满载范围内均能实现软开关。通过闭环控制,提高输出电压的抗干扰能力。

2 LCC谐振变换器工作原理

2.1 LCC谐振电路工作状态分析

图1为电容型滤波LCC谐振变换器电路。Cs,Ls为LCC谐振电路串联谐振电容和谐振电感,Ls包含变压器折算到初级的等效漏感;Cp为并联谐振电容,包含变压器折算到初级的分布电容。分析前先假设:输出电容很大,Uo保持不变;所有器件都是理想器件;电感电流连续且为理想正弦波。

图2为移相PWM控制稳态时的主要波形。

(1)[t0~t1] t0时刻,电感电流iLs为零,此时VQ4为零电流开通,在前一时段VQ1已经零电压开通,VQ1,VQ4导通,uAB为正,Ls,Cs,Cp发生谐振,输出整流桥关断,uCp从-Uo/n升高,到t1时刻,uCp升高至Uo/n,输出整流桥导通,此阶段结束。

(2)[t1~t2] 谐振电流流经VQ1,VQ4,Ls,Cs发生谐振,uCp被箝位在Uo/n,电路由变压器传递能量。

(3)[t2~t3]t2时刻,VQ1关断,iLs给C1充电,C3放电,当C3电压为零时,VQ1~VQ3自然换向完成。由于C1的缓冲作用,VQ1关断时电压上升率很小,近似于零电压关断。

(4)[t3~t4] 在t3时刻,VQ1,VQ3导通,VQ3零电压开通,iLs为正,uAB为零,t4时刻,iLs即将减小至零时,VQ4零电流关断。

(5)[t4~t5] iLs流过VD2,VD3,uAB为负,t5时刻,iLs到零,半个周期结束。

t5开始,变换器开始另一半周期的工作,工作过程与上半周期对称,在此不再赘述。

通过以上分析可知,采用移相控制时,开关管不存在开通损耗。关断时,开关管电流转移到与其并联的缓冲电容上,电容限制了开关管两端的电压上升率,从而实现开关管零电压关断。每一个反并联二极管都是自然关断,不存在关断损耗。因此,相比硬PWM模式,采用LCC变换器时,开关损耗会大幅度减小,逆变器效率随之增大。

[!--empirenews.page--]

2.2 LCC谐振变换器稳态模型

为简化分析,使用各个变量的基波分量近似代替变量本身,然后用经典的线性交流分析法进行分析,设计出所需的谐振参数,这就是基波近似法的基本思想。将变压器初级电压和电流进行傅里叶变换后,取其基波分量,发现变压器初级电压基波分量的相位滞后于初级电流基波分量,变压器、整流桥、输出滤波器及负载组成的二端口网络呈容性。故可将变压器以后的模块等效为一个RC并联电路,如图3所示。图中,Re为等效电阻,Ce为等效电容。图中A,B两点电压的基波分量为:

式中:Udc为逆变器的直流输入电压;D为PWM驱动信号的占空比。

在图3中,考虑D的影响,利用基波近似法,可得电压增益M为:

公式(2)中,k21为交流电压传输系数,其值为变压器初级电压的基波分量与A,B两点电压基波分量的比值,由图3可得其表达式为:

[!--empirenews.page--]

根据式(2)~(5),绘制出不同负载下M与fsN的关系曲线(取α=1),如图4a所示。通过调整电路参数,即可得合适的增益曲线和工作频率范围。图4a为选择不同增益谐振电路工作频率提供了依据。

由图4a可知,从空载到满载变化时,fsN调节范围很大,而谐振元件确定后谐振频率就固定了,因此仅依靠变频控制需要开关频率变化范围很大。在调频基础上,配合调节D,能够在较小频率变化范围内,实现全负载范围内软开关,由式(2)~(6)得到不同负载下M与D的关系,图4b为移相调节时占空比的选择提供了理论依据。根据效率公式绘制出不同负载下逆变器效率曲线,如图4c所示。由图可知,fsN>1时,Q越小,即负载电流越大,效率越高。fsN<1时,负载电流越小,效率越高。

3 闭环控制系统

整个闭环控制系统框图如图5所示。控制器、移相器和A/D转换都由主芯片dsP IC30F6010A实现。移相控制可以直接由DSP数字编程得到,因此无需D/A转换。

此处采用PI控制器进行闭环控制,其频域范围内的传递函数为:us/es=kp+ki/s。

采用后向欧拉法进行数字化:

uk=Tski+kp(ek-ek-1)+uk-1      (7)

式中:kp,ki;分别为比例、积分系数。

由于移相控制器是靠数字方法实现的,输入和输出的调节均为瞬时,当控制器输出电压很大时,变换器会有振荡现象,需要在移相控制后加上一阶滤波网络消除振荡。

4 实验过程及结果

为验证结果的正确性,设计一台基于LCC谐振逆变器的高压直流电源基本参数为:输入电压(220+20%)V;输出电压35 kV;输出功率0~7 kW。

根据设计要求,确定高频高压变压器的基本参数:磁芯型号UU80x65x40;匝数比1:146;初、次级匝数分别为32和4672;磁芯个数为2。

变压器折算到初级的漏感为75.4μH,分布电容为44.2 nF。取满载时Qf=3,α=1,得到总串联谐振电感和串联谐振电容的值为187μH,308 nF。考虑分布参数的影响,取Ls=110μH,Cs=300 nF,Cp=260 nF。其中,驱动芯片采用HCPL-316J;IGBT采用SKM150GB128D,额定电压为1 200 V,额定电流200 A。采用差分方式进行采样,通过HCPL-788J对电压电流采样信号隔离。控制芯片采用dsP IC30F6010A,其主要功能是产生PWM驱动波形,根据图5进行移相和调频控制,实现全负载范围内软开关,开关频率变化范围为18~25 kHz,由图4b,考虑死区时间,得到对应的占空比变化范围为0.5~0.85,能够在全负载内保持输出电压恒定。

整个闭环控制计算过程按照式(7)在DSP中直接实现,通过反复实验,取Ts=50μs,kp=4,ki=600时,电源对负载波动的稳定效果最好,负载的纹波最小。

按照上述参数进行实验,图6示出实验波形。

可见,满载时,fs=18 kHz,Dmax=0.85;空载时,fs=25 kHz,Dmin=0.5。在整个负载变化范围内,iLs和uCs都是按照正弦规律变化。空载时,iLs波形出现了断续,这是占空比减小引起的,此时开关管依然可实现零开关。iLs超前于uCs,整个逆变器呈感性。从空载到满载变化时,效率会先增加随后稍减,这是由于满载时开关管工作频率低于谐振频率。空载时效率最低,其值为75%。

[!--empirenews.page--]

图6d对比了硬PWM模式与采用LCC谐振逆变器的负载电压波形。由图可知,输出高压直流幅值为35 kV。采用硬PWM模式进行逆变,每个周期输出电压都有很大尖峰,容易损坏功率器件。采用LCC谐振逆变器后能使每个开关管实现软开关,输出电压尖峰明显减小,提高了逆变器的效率。

5 结论

通过对测量波形进行数据分析,可得如下结论:①开关管和反并联二极管在全负载范围内实现软开关;②整个直流电源平均效率达到87%;空载时,效率能够达到75%;③输出电压35 kV,通过闭环控制,纹波系数小,负载电压纹波控制在5%以内;④电源体积小,质量轻。

此处给出的设计方法对于串并联谐振参数的设计具有参考价值。与传统方法相比,该设计方法考虑了变压器本身分布参数影响,在频率变化范围不大的前提下,通过移相PWM控制实现开关管和反并联二极管的软开关。通过图示方法设计谐振参数,简单直观,实验验证了设计的正确性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电力电子和电气工程领域,直流电源的稳定性与纯净度对于整个系统的正常运行至关重要。然而,由于电源线路中的干扰和噪声,直流电源中常常混入交流成分,这严重影响了电源的质量。因此,如何有效地滤波直流电源,消除其中的交流干扰,成...

关键字: 直流电源 滤波

在现代电子工程领域中,直流电源作为电子设备的“心脏”,其性能的稳定性和电流输出的能力直接决定了整个系统的运行效果。随着电子技术的飞速发展,对直流电源电流输出的需求也在不断增长。因此,了解如何增加直流电源的电流输出显得尤为...

关键字: 直流电源 电子设备

在电子工程、实验室研究以及工业应用中,直流电源扮演着至关重要的角色。它能够提供稳定且连续的直流电流,以满足各种电子设备的需求。然而,不同的应用场景往往需要对直流电流进行精确的调节。本文将深入探讨直流电源直流电流的调节方法...

关键字: 直流电源 直流电流

随着电子技术的不断发展,直流电源在各种电子设备中的应用越来越广泛。而在某些特定场合下,需要降低直流电源的电流输出以满足实际需求。本文将从科技角度出发,深入解析直流电源降电流的方法,为读者提供有益的参考。

关键字: 直流电源 负载电阻

当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。电压源逆变器的输入有一个刚性直流电压源,其阻抗为零。实际上,直流电压源的阻抗可以忽略不计。

关键字: 逆变器 直流电源 电压源

可编程式直流电源是一种将控制电路、功率变换电路和开关稳压电路集成于一体的新型电源,具有体积小、重量轻、效率高、功能强等特点。

关键字: 可编程电源 直流电源 功率变换

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

直流电源,作为电力电子领域中的重要组成部分,广泛应用于各种电子设备和系统中。在谈及直流电源的可调频问题时,我们首先需要明确“调频”这一概念在直流电源中的具体含义。调频通常指的是改变交流电源的频率,而直流电源输出的是恒定的...

关键字: 直流电源 电力电子 频率

在电池充电过程中,充电电流的大小是一个至关重要的参数。它直接影响电池的充电速度、充电效率以及电池的使用寿命。因此,在使用可调直流电源为电池充电时,如何确定合适的充电电流大小显得尤为重要。本文将从电池特性、充电方式、充电时...

关键字: 电池 直流电源 锂离子电池组

随着科技的飞速发展和电子设备的普及,高精度直流电源的应用领域日益广泛。无论是在科学研究、工业生产还是日常生活中,高精度直流电源都发挥着不可或缺的作用。本文将对高精度直流电源的应用领域进行深入探讨,旨在揭示其在各个领域中的...

关键字: 直流电源 高精度 电源设备
关闭
关闭