• EMI 干扰对电路系统的潜在威胁

    电磁干扰(EMI)作为电路设计中的 “隐形杀手”,不仅会导致信号失真、性能下降,严重时还会引发系统崩溃,甚至干扰周边电子设备的正常运行。在消费电子、工业控制、汽车电子等领域,EMI 合规性已成为产品上市的必备条件。元件布局作为电路设计的基础环节,直接决定了电磁耦合路径的强弱,是控制 EMI 的关键突破口。科学的布局设计能够从源头削弱电磁辐射与传导干扰,相比后期添加屏蔽罩、滤波器等补救措施,更具成本优势和可靠性。

  • 压敏电阻与陶瓷气体放电管抗雷击浪涌电路分析

    在电力系统、通信设备及电子终端等领域,雷击产生的浪涌电压是造成设备损坏的主要诱因之一。雷击浪涌具有峰值高、上升沿陡、持续时间短的特点,其电压峰值可达到数千甚至上万伏,远超常规电子设备的耐压极限。压敏电阻(MOV)和陶瓷气体放电管(GDT)作为两类常用的浪涌保护器件,凭借各自独特的电气特性,在防雷电路中发挥着关键作用。本文将深入分析两类器件的工作原理,并结合典型应用电路,探讨其在抗雷击浪涌保护中的协同机制与设计要点。

  • 电容器快速充电原理以及电容的特性详解

    快速充电,电容充电是一种快速的充电方式,可以在短时间内实现向电容器内注入大量电荷的过程。这与电容器内部构造以及电容的特性密切相关。

  • 常用变压器的符号标识和技术参数

    变压器可以有多种类型的结构。变压器从一侧到另一侧没有任何电气连接;尽管如此,两个电气独立的线圈仍然可以通过电磁通量传导电力。

  • 运算放大器使用中的关键注意事项与实践指南

    运算放大器(简称 “运放”)作为模拟电路的核心器件,广泛应用于信号放大、滤波、比较、运算等场景。其性能优劣直接决定整个电路的稳定性与精度,但在实际使用中,即使选用高性能运放,若忽视细节设计,仍可能导致电路功能失效或性能大幅下降。本文结合工程实践,从电源配置、输入输出特性、频率响应、噪声控制、PCB 布局五个维度,系统梳理运放使用中需重点关注的问题及解决方案。

  • ESD 导致电子器件功能失效的两大核心机理解析

    在电子制造业与电子设备运维领域,静电放电(Electrostatic Discharge,简称 ESD)是导致电子器件功能失效的 “隐形杀手”。据行业数据统计,电子制造业中因 ESD 引发的产品不良率占总不良率的 25% 以上,且超过 30% 的电子器件早期失效与 ESD 损伤直接相关。ESD 之所以能对精密电子器件造成毁灭性影响,核心源于其触发的两种关键失效机理 ——静电放电电流烧毁机理与静电场击穿机理。这两种机理从不同维度破坏器件结构与性能,最终导致器件无法正常工作,深入理解其作用过程对电子器件的防护设计与可靠性提升具有重要意义。

  • SMT 减少 BGA 空洞 (Void) 发生的工艺控制方法

    在表面贴装技术(SMT)领域,球栅阵列封装(BGA)以其引脚数目多、I/O 端子间距大、引脚与走线间寄生电容少、散热性能优等诸多优势,成为了电子产品制造中的关键技术。然而,BGA 焊点空洞问题却严重影响着产品的质量与可靠性,是 SMT 生产过程中亟待解决的重要难题。空洞不仅会削弱焊点的机械强度,降低其导电性和热传导能力,在汽车电子、航空航天等高可靠性要求的领域,甚至可能引发灾难性的失效。因此,深入研究并有效控制 BGA 空洞的产生,对于提升电子产品的品质具有至关重要的意义。

  • 提升电子系统抗干扰能力与电磁兼容性的实践路径

    在电子设备密集化、信号传输高速化的当下,电磁干扰(EMI)已成为影响系统稳定性的核心隐患。电磁兼容性(EMC)作为设备在复杂电磁环境中正常工作的关键指标,其性能优劣直接决定产品可靠性与市场竞争力。本文将从干扰源头分析、硬件设计优化、软件抗扰策略、屏蔽接地技术四个维度,系统梳理提升抗干扰能力与电磁兼容性的实用方法。

  • 电气电子设备中,电场的屏蔽应注意哪些点?

    在具体的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。

  • 数字电路中一种特殊的输出模式---开漏输出

    开漏输出(Open-Drain Output)是数字电路中一种特殊的输出模式,其核心特征在于仅通过N型MOS管(NMOS)实现低电平输出,高电平输出则依赖外部上拉电阻。

  • 算法转换与近似计算:FPGA计算技术的创新引擎

    在人工智能与边缘计算快速发展的今天,FPGA(现场可编程门阵列)凭借其并行处理能力和可重构特性,成为实现硬件加速的核心载体。然而,传统算法直接映射到FPGA时,常面临资源消耗大、时序紧张等挑战。算法转换与近似计算技术的引入,为FPGA计算技术开辟了新的优化路径。

  • 深度学习算法在FPGA中的硬件加速框架设计

    深度学习算法的广泛应用对计算性能提出了严苛要求,传统CPU/GPU架构在能效比和实时性方面逐渐显现瓶颈。FPGA(现场可编程门阵列)凭借其高度可定制的并行计算架构和低功耗特性,成为深度学习硬件加速的理想选择。本文从框架设计、关键技术及代码实现三个维度,探讨FPGA加速深度学习算法的核心方法。

  • 通用CNN加速器的指令驱动架构与模块化实现

    随着深度学习技术的飞速发展,卷积神经网络(CNN)在图像分类、目标检测等领域取得了显著成果。然而,CNN的高计算复杂度对硬件平台提出了严峻挑战。针对这一问题,本文提出了一种基于指令驱动的通用CNN加速器架构,通过模块化设计实现了高效能、可扩展的硬件解决方案。

  • 电阻在电源输出调节与故障保护中的应用指南

    在电子电路设计与维修中,电源系统的稳定性直接决定了设备的工作效率与使用寿命。电阻作为最基础的电子元件,不仅能实现电源输出电压、电流的精准调节,还可构建低成本、高可靠性的保护机制,避免过流、过压等故障对电源模块造成永久性损坏。本文将从原理到实践,系统讲解如何利用电阻实现电源输出调节,并建立完善的保护体系。

  • 开关电源 PCB 印制板铜皮走线的注意事项

    在开关电源的设计中,PCB 印制板的铜皮走线看似简单,实则是影响电源性能、稳定性与可靠性的关键环节。开关电源工作时存在高频开关动作、较大电流变化以及复杂的电磁环境,不合理的铜皮走线设计可能导致电源效率降低、发热严重、电磁干扰(EMI)超标,甚至引发电路故障。因此,掌握铜皮走线的注意事项,对确保开关电源稳定运行具有重要意义。

发布文章