在半导体制造的精密链条中,测试探针卡(Probe Card)犹如一座无形的桥梁,连接着待测芯片与测试系统,其性能直接决定了芯片良率检测的准确性与生产效率。从5纳米先进制程到第三代半导体材料,从消费电子芯片到航天级器件,探针卡技术始终是半导体质量把控的核心环节。本文将从技术原理、设计挑战、创新趋势三个维度,揭开这一精密艺术的神秘面纱。
在海拔5000米的高原基站中,通信设备需承受-40℃的极寒与55℃的暴晒;在新能源汽车的电池管理系统中,功率模块要在-30℃至125℃的范围内循环工作;在航天器的电子舱内,电子元件更需经受发射阶段的瞬时高温与太空环境的极低温交替冲击。这些极端场景对印刷电路板组件(PCBA)的可靠性提出了严苛挑战,而温度循环测试(Temperature Cycling Test, TCT)正是验证其耐受能力的核心手段。这项通过模拟冷热交替环境来评估材料膨胀/收缩效应的测试技术,已成为电子制造业把控产品质量的“生死关”。
在5G通信、人工智能与集成电路技术高速发展的今天,电子元器件向高密度、高功率、微型化方向演进,其热管理难题愈发凸显。传统环氧塑封料因热膨胀系数(CTE)与芯片、基板不匹配,易引发界面分层、翘曲甚至失效,成为制约器件可靠性的关键瓶颈。西安交通大学胡磊教授团队提出的负热膨胀材料Cu₂V₂O₇填充方案,通过调控树脂基复合材料的热膨胀行为与热传导路径,为解决这一难题提供了创新思路。
在电子制造行业,SMT(表面贴装技术)车间的炉后AOI点级不良率是衡量焊接质量的核心指标。当不良率超过客户要求的50ppm(百万分比)时,不仅会导致产品返工成本激增,更可能引发批量性质量事故。本文从工艺参数优化、设备精度提升、过程控制强化三个维度,提出系统性解决方案,助力企业将不良率稳定控制在50ppm以下。
在现代电子系统中,电源管理的重要性日益凸显。随着便携式设备、物联网(IoT)设备以及高性能芯片的不断发展,对电源稳压器提出了越来越高的要求。低压差线性稳压器(Low Dropout Regulator,LDO)因其能够在输入与输出电压差极小的情况下稳定输出电压,成为众多应用场景中的理想选择。尤其是具备低功耗、低压差以及中输出电流特性的 CMOS LDO 稳压器,更是在满足系统性能需求的同时,有效降低了功耗与成本,受到广泛关注。
当芯片承受2mA的电流和300V的电压时,其功耗将达到0.6W,这无疑会导致芯片发热。
LED显示屏控制系统,简称LED控制系统,是专门为满足用户需求而设计的,用于确保LED大屏幕能够准确显示内容的系统。根据联网方式,该系统可分为两大类:联网版和单机版。
这种驱动方式特别适用于LED灯具,能够确保LED灯具在不同工作环境下保持稳定的亮度输出。
在电子电路中,电解电容的纹波电流承受能力直接影响其使用寿命和电路稳定性。准确测试纹波电流不仅能验证电容性能是否达标,也是电路设计可靠性验证的关键环节。以下从测试原理、设备准备、操作步骤到数据解读,全面介绍电解电容纹波电流的测试方法。
在电子设备的复杂 “神经系统” 中,NTC 热敏电阻作为关键的温度传感器,正凭借其独特的性能与多样化的封装形式,悄然渗透到各个领域,从日常的家用电器到高端的汽车工业,从精密的医用设备到复杂的工业自动化场景,其应用之广泛超乎想象,为众多行业的发展注入了强大动力。
在科技飞速发展的当下,边缘 AI 正经历着一场深刻的变革。从最初的 TinyML 微型机器学习探索低功耗 AI 推理,到边缘推理框架的落地应用,再到平台级 AI 部署工具的兴起以及垂类模型的大热,我们已经成功实现了 “让模型跑起来” 的阶段性目标。然而,这仅仅是边缘 AI 发展的起点,其未来的演进方向正逐渐聚焦于一个更为关键的问题:当 AI 模型能够在边缘设备上稳定运行后,它们能否进一步实现协作,从而推动边缘 AI 迈向更高的智能形态?
VK36N3D 芯片专为检测外部触摸按键上人手的触摸动作而设计,具有极高的集成度。这意味着在实际应用中,工程师仅需搭配极少的外部组件,就能轻松实现触摸按键的检测功能,大大简化了电路设计,降低了生产成本。例如,在一些小型智能设备中,使用 VK36N3D 芯片可以使电路板的布局更加紧凑,减少了因过多外部组件带来的空间占用和潜在故障点。
在现代电子设备中,晶振作为提供精确时钟信号的核心元件,其重要性不言而喻。从智能手机、计算机到汽车电子、通信基站,晶振的身影无处不在,它如同电子设备的 “心脏起搏器”,确保各种复杂电路有条不紊地运行。而晶振的核心 —— 石英晶体,凭借其独特的物理特性,在经过一系列精密复杂的生产工艺后,华丽变身为高精度振荡器,为电子设备的稳定运行提供坚实保障。
安全地的主要作用是保障人身安全和设备的稳定运行。在电气设备中,当发生绝缘损坏等故障时,可能会使设备外壳带电,若没有安全接地,人体一旦接触到带电外壳,就会发生触电事故。通过将设备外壳与大地进行可靠连接,当出现故障电流时,电流能够迅速通过接地导线流入大地,因为大地的电位被视为零电位,且接地电阻通常很小,根据欧姆定律,这样就可以保证设备外壳的电位接近大地电位,从而避免人体触电。例如,在家庭用电中,三孔插座的最上方插孔就是连接安全地的,所有使用三脚插头的电器,其金属外壳都通过插头与安全地相连,为用户提供了基本的安全保障。
在电子电路设计领域,运算放大器扮演着极为关键的角色,广泛应用于信号放大、滤波、比较等众多电路之中。而在考量运算放大器的性能时,“最大电源电流” 是一个不容忽视的重要参数。它不仅直接关联到运算放大器自身的功耗情况,更对整个电路的稳定性、可靠性以及电池供电系统的续航能力等方面产生着深远影响。因此,深入探究运算放大器的 “最大电源电流”,对于优化电路设计、提升系统性能具有重要意义。