当前位置:首页 > 模拟 > 模拟
[导读]  摘要本应用报告说明了如何使用合理的电路板布局和/或缓冲电路来减少升压转换器转换节点上的高频振铃。  1 问题的描述图 1 的电路图显示了升压转换器的关键环路,该环路由寄生电感和电容构成,分别标识为 LPAR

  摘要

本应用报告说明了如何使用合理的电路板布局和/或缓冲电路来减少升压转换器转换节点上的高频振铃

  1 问题的描述

图 1 的电路图显示了升压转换器的关键环路,该环路由寄生电感和电容构成,分别标识为 LPAR 和 CPAR 参考指定器。在两个开关和电感器件的开关转换器相交处的节点被称作开关节点。在开关节点上,寄生电感和电容交互作用并引起电压在 200-MHz+ 范围内振铃是比较正常的。如果该振铃的振幅大于低压侧开关的额定电压的最大绝对值,将对开关产生破坏性作用。另外,传导发射和/或振铃产生的电磁干扰 (EMI) 也会使附近的集成电路出现问题。

升压转换器转换节点的振铃最小化

图 1 升压转换器示意图

升压转换器转换节点的振铃最小化

图 2 升压转换器转换节点上的振铃

图 2 给出了一个升压转换器转换节点的振铃频率范围图,时间量程 (time scale) 为 5-ns/div。我们使用了带宽均为 500-MHz 的示波器和示波器探针(大约是 200-MHz 振铃频率的 2 倍)来表示示波器图形。将示波器探针的接地环路最小化以避免感应拾取造成测量结果失真。由于 VIN = 3.3 V,并且 VOUT = 5 V,所以转换节点的峰值电压不应大于 VOUT + VDIODE≈5.7 V,但是转换节点振铃的振幅峰值为 9.8 V,其会损坏低压侧开关。

在最小化振铃的设计阶段,电源设计人员会有多种选项。如果使用了控制器,设计人员还应选用拥有最小寄生电容的 FET 和二极管,并且合理布置电路板,使开关和电感器之间的距离最小化,从而使 LPAR2 和 LPAR3 最小化。此外,设计人员还可以通过减小 FET 电源引脚和电源接地点或接地层之间的距离来使 LPAR2 最小化。通过将大输出电容尽可能地靠近二极管的阴极和接地电源放置,也可以使 LPAR4 和 LPAR5 最小化。推荐使用介于输出值(0.01 mF – 2.2 mF)和接地电源之间的高频旁路电容 (COUT-BYP) 来最小化振铃。

由于电路板的尺寸限制或是由于内部 CPAR#、LPAR1、LPAR2 以及 LPAR3 均被集成在FET 电源 IC 中,改善电路板布局是不大可能的。因此,就要求设计一个缓冲电路,该电路由从开关节点至接地电源的 RSNUB 和 CSNUB 组成,是一个用来消除在闭合开关时电路寄生电感引起的尖峰电压的能量吸收电路。在开关闭合时,通过为电流流经电路寄生电感提供一条接地的替代路径,该缓冲电路可以减少电压瞬态并抑制寄生电感上发生的继起振铃。

{{分页}}

该应用报告的以下部分将讲述在没有明显减少转换关闭上升时间或降低整体效率情况下,如何布置缓冲电路组件来抑制振铃的步骤。

在确定了由寄生电感 [L∑PAR#] 和寄生电容 [C∑PAR#] 引起的振铃频率(fINIT = 217 MHz)后(如图 2 振铃频率范围图所示),在转换节点和接地之间添加足够的电容[CADD],振铃频率就可减半。图 3 显示了在添加了 300 pF 电容后,振铃频率为 113 MHz。

升压转换器转换节点的振铃最小化

图 3 添加 300pF 接地电容后,升压转换器转换节点的振铃频率

LC 电路的谐振频率与 LC 积的平方根成反比,因此现在的电路总电容 [C∑PAR# + CADD] 是其原始值 [或 C∑PAR# = CADD/3] 的 4 倍。这是加载于 CSNUB 的最小电容值。引起振铃的寄生电感值可以通过如下方程式计算出:

升压转换器转换节点的振铃最小化
(1)

重新整理,得出

升压转换器转换节点的振铃最小化
(2)

在此例中,L∑PAR# 为 5.4nH。最后,最理想的缓冲电阻为原始寄生电容 [C∑PAR# = CADD/3=100pF] 和杂散电感 [L∑PAR# = 5.4 nH] 的特性阻抗:

升压转换器转换节点的振铃最小化

(3)

从公式 3 中,(我们可以看出) RSNUB = 7.3Ω,采用上舍入法后,取 10Ω。将 CSNUB 的值设置为 330pF 后,下一个标准值大于 CADD 的计算值,从转换节点至接地的 RSNUB 值为 10Ω,第二个转换节点振铃频率范围图如图 4 所示。

{{分页}}

升压转换器转换节点的振铃最小化

图 4 添加缓冲电路后,升压转换器的转换节点

显然现在振铃基本消除,振铃的峰值振幅降低了 1.8V,现为 8V,相当于减少了20%,并且转换跳闸时间只缩短了 2ns。设计人员可以极大地增加 CSNUB 值,直到转换节点角开始弯曲(即,在 Q=1 时,L∑PAR#,CSNUB,以及 RSNUB 电路被有效的抑制)。但是,随着 CSNUB 值的增加,缓冲电路所吸收的能量也有所增加,因此 RSNUB 的功耗也得相应增加,而同时降低升压转换器的效率。RSNUB 的功耗可由下式计算得出 PSNUB = ½ CSNUB

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2022年10月11日 /美通社/ -- 10月10日,明月镜片正式官宣刘昊然成为品牌代言人。一个是中国镜片领导品牌,通过科技创新引领了镜片行业的发展;一个是新生代实力演员,凭借高票房作品赢得了观众的认可。此次双方携...

关键字: PMC 控制 节点 蓝光

本文转载自"中国信息化杂志"微信公众号,作者:石菲。转载已获授权。 北京2022年9月20日 /美通社/ -- 近日,在位于北京的IBM创新体验中心,I...

关键字: IBM 数字化 接地 AI

(全球TMT2022年9月5日讯)燧原科技在2022世界人工智能大会"算尽其用·定义AI算力中心新实践"云端算力产业应用论坛上正式发布云燧智算机(CloudBlazer POD)。云燧智算机是针对大规模、集约化人工智能...

关键字: 人工智能 数据中心 节点 CPU

凝聚燧原科技两代芯片研发与多个大规模人工智能算力中心工程实践,面向大规模、集约化、绿色低碳数据中心建设,云燧智算机(CloudBlazer POD)正式发布。 上海2022年9月3日 /美通社/ -- 燧原科技在202...

关键字: 人工智能 数据中心 节点 TC

北京2022年9月2日 /美通社/ -- 近日,由CDCC中数智慧信息技术研究院主办的2022第三届中国数据中心绿色能源大会(以下简称中国数据中心绿色能源大会)在"六朝金陵,十里秦淮"的南京...

关键字: 数据中心 绿色能源 数字经济 节点

中华中医药学会中医体质分会第二十次学术年会暨国医大师学术经验传承研讨会同期召开 北京2022年9月1日 /美通社/ -- 为了满足我国中医药传承创新发展迫切需求,加快建设高层次中医药人才队伍,培育一批中医药领军人才,打...

关键字: 研讨会 节点 钟南山

北京2022年8月31日 /美通社/ -- L11级别整机柜交付模式是指机柜在工厂完成PDU及其它机柜配件装配,完成服务器上架安装及交换机上架安装(可选),并完成柜内布线等原本需要在数据中心部署现场进行的装配活动,以整机...

关键字: 数据中心 BSP 节点 交换机

激荡新片区,成就新梦想 上海2022年8月16日 /美通社/ -- 近日,"激荡新片区,成就新梦想"临港新片区三周年项目集中签约仪式在上海隆重举行。上海市经信委、市科委、市教委、浦东新区、奉贤区有关...

关键字: 集成电路产业 双核 节点 中国集成电路

(全球TMT2022年8月12日讯)西湖大学联手浪潮信息等科技企业建设领先的创新平台与实验室,为前沿科技研究构建数据基座,创造影响世界、造福人类的科学知识和技术。西湖大学工学院采用了浪潮分布式存储AS13000、AI服...

关键字: 节点 分布式 读写 INFIN

北京2022年8月11日 /美通社/ -- 坚持面向世界科技前沿,不断向科学技术广度和深度进发是科技工作者的初心和使命。工欲善其事,必先利其器,西湖大学联手浪潮信息等科技企业建设领先的创新平台与实验室,为前沿科技研究构建...

关键字: 节点 分布式 读写 数据安全

模拟

31144 篇文章

关注

发布文章

编辑精选

技术子站

关闭