当前位置:首页 > 电源 > 电源电路
[导读]BJT是所有电子元件之王,它改变了电子技术的进程。晶体管_也可以是一个功率元件,并允许重要的电流值通过。功率 BJT 虽然采用与信号晶体管不同的技术制造,但具有非常相似的工作特性。主要区别在于较高的耐受电压和电流值以及较低的电流增益。为此,需要以相当高的基极电流驱动功率晶体管。

BJT是所有电子元件之王,它改变了电子技术的进程。晶体管_也可以是一个功率元件,并允许重要的电流值通过。功率 BJT 虽然采用与信号晶体管不同的技术制造,但具有非常相似的工作特性。主要区别在于较高的耐受电压和电流值以及较低的电流增益。为此,需要以相当高的基极电流驱动功率晶体管。

功率晶体管的开关速度不是很高,因此,在最新一代的设计中,不再使用这些组件。功率 BJT 由三个端子组成:集电极 (C)、发射极 (E) 和基极 (B)。发射极-基极结远小于集电极-基极结。基极很薄,电子可以很容易地穿过它,到达集电极区,它携带更多的电荷。功率晶体管用于放大器、电源和开关电路。

当一个小信号被馈送到基极时,BJT 会传导大量电流。只要在底座上有控制信号,该组件就保持在 ON 状态。功率晶体管可以用作放大器、线性区域或开关。如果它用作放大器,那么小的输入电流会产生大的输出电流。相反,作为开关,它工作在遮断 (OFF) 或饱和 (ON) 状态,耗散更少的功率。图 5 显示了晶体管的一般操作。该方案包括辉煌的 2N3055 晶体管,具有以下特性的示例:

集电极-基极电压 (VCBO):100 V;

集电极-发射极电压 (VCEO):60 V;

发射极-基极电压 (VEBO):7 V;

集电极电流 (Ic):15 A;

基极电流 (Ib):7 A;

总功耗(Pd,TC=25°C):115 W;

直流电流增益 (hfe):70。

示例电路的特点是直流电源电压为 48 V,灯为 3 A,基极电阻为 220 Ohm。在饱和条件下,约 200 mA 的基极电流足以使约 3 A 的电流通过集电极和负载,晶体管的总功耗约为 1.5 W。为确保良好的饱和度,它足以让比理论电流高 4-5 倍的电流通过基极,显然是考虑到组件的增益。图“a”显示了集电极电流随基极电流变化的趋势。在电路采用的配置中,比例集电极电流对应于 0 mA 和 200 mA 之间的基极电流。一旦超过这个门槛,晶体管处于饱和状态,基极电流的进一步增加不再影响集电极电流。下一个模拟涉及通过两种不同的技术以一半功率打开灯泡:

· 提供基极电流以使集电极达到 VCC / 2;

· PWM信号的使用

在第一种情况下,使用了一个 850 欧姆的电阻,以使仅 56 mA 的电流通过基极,使晶体管进入线性区域,并在集电极上流过 1.5 A 的电流。这种技术有效并且允许灯泡以一半的光亮起,但晶体管耗散(以及随之而来的功率损耗)太高(参见图表“b”的结果)。事实上,测量产生了以下结果:

IB:56毫安;

Ic:1.58 安;

Pd(电池):75.8 W;

Pd(灯):37.4 W;

Pd(BJT):38.4 瓦;

Pd(R_base):2.6W;

效率:只有49.3%。

超过 50% 的功率因晶体管不必要地因热量而损失,为了使其无危险地工作,必须使用良好的散热器对其进行充分冷却。然而,使用 PWM 技术,在获得与灯相同的照明时,耗散和功率损耗要低得多。该技术包括使晶体管的基极经受一系列适当宽度的开-关脉冲。负载由所有可用能量供电,并且半导体组件耗散非常低的功率。对 PWM 解决方案进行的测量返回以下结果:

信号:矩形 50 Hz,占空比 25 %;

Ib:53毫安(平均);

Ic:0.8 A(平均);

Pd(电池):38.1 W;

Pd(灯):37.7 W;

Pd(BJT):385.6 毫瓦;

Pd(R_base):2.54 W;

效率:99%。

您会立即注意到两种解决方案在效率和功耗方面的差异。图“c”显示了晶体管导通开始时的功率损耗。在这种仅持续几微秒的情况下,电流和电压不再彼此同相,并产生耗散功率的高峰值。在元件导通结束期间也会重复相同的峰值。所有电源设备都存在同样的问题。


电力电子课程:第 6 部分 -  BJT图 5:晶体管可以使用多种技术驱动大负载

结论

在本文中,我们研究了一些更常用的功率元件。

在一些解决方案中,它们仍然被使用。

其他功率元件类型将在下一篇文章中进行探讨;其中一些是近年来电子技术开发的设备,代表了该行业的未来。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

在上一集中观察到的双极晶体管的缺点是开关时间太长,尤其是在高功率时。这样,它们不能保证良好的饱和度,因此开关损耗是不可接受的。由于采用了“场效应”技术,使用称为 Power-mos 或场效应功率晶体管的开关器件,这个问题...

关键字: 电力电子 MOSFET IGBT

基于硅 (Si) 的电力电子产品长期以来一直主导着电力电子行业。由于其重要的优势,碳化硅(SiC)近年来在市场上获得了很大的空间。随着新材料的应用,电子开关的静态和动态电气特性得到了显着改善。

关键字: 电力电子 碳化硅 GaN

如前几篇文章所述,大电流流经电缆和高截面连接。需要能够承受高电流强度而不会损坏自身或在极高温度下运行的特殊电子元件,以便切换、控制或转移该电流。电力电子元件是静态半导体器件,可以控制微弱的控制信号以产生高输出功率。

关键字: 电力电子 可控硅 双向可控硅

通常,设计人员只关注电源组件和最大化使用能量的最佳技术。但是他们忘记了研究最好的 PCB 解决方案及其相关的最佳电子元件布置。最近,项目已经基于采用能够承受大工作功率的高度集成的组件。高电流和电压的管理需要非常复杂的技术...

关键字: 电力电子 PCB设计

在深入电力电子领域之前,我们将在电力电子课程的第三部分讨论一个关键主题。电缆、电线、PCB和板用于识别能量传输系统,这些系统始终需要正确计算和确定尺寸。 设计人员必须从支撑和布线系统开始创建自己的电路。使用强大的电源组...

关键字: 电力电子 电缆 电线

电力电子的概念已经发展,如今它与与电力转换、其控制和相对效率相关的技术相关联。该部门还与适合能源转换的所有电气和电子系统密切相关。在电力电子中进行的电路研究主要集中在效率上。能源是一种非常宝贵的资源,必须以尽可能最便宜的...

关键字: 电力电子 电路效率

电力电子在当今的技术中发挥着重要作用,能源管理变得极为重要。除了安全之外,提高所有设备的效率也是保护环境的责任。 本课程将以简单易懂的方式涵盖广泛的主题。它将包括各种技术解释、数学概念、图表和电子模拟。

关键字: 电力电子 电气系统

带来卓越的电动汽车性能与成本改善 德国纽廷根和以色列耐斯兹敖那2022年8月12日 /美通社/ -- hofer powertrain为新一代电动汽车传动系统奠定基础。德国...

关键字: POWER TECHNOLOGIES 电子元件 电力电子

有一天,我的老板让我和他一起在会议室会见一些来自公共交通汽车制造商的人。他说他们的其中一个供应商的产品有问题,并请求我们提供帮助

关键字: BJT 晶体管

整个电力电子行业,包括射频应用和涉及高速信号的系统,都在朝着在越来越小的空间内提供越来越复杂的功能的解决方案发展。设计人员在满足系统尺寸、重量和功率要求方面面临越来越苛刻的挑战,其中包括有效的热管理,从印刷电路板的设计开...

关键字: 电力电子 PCB基板 热管理

电源电路

12671 篇文章

关注

发布文章

编辑精选

技术子站

关闭