当前位置:首页 > 显示光电 > 光机电领域

说明
本案例将Lumerical和HFSS在行波MZM调制器建模中的功能与optiSLang相结合,提供了强大的优化能力以寻找最佳性能设计。

 

下载
联系工作人员获取附件

综述

本案例建立在已有的硅波导建模实例(Ansys Lumerical 行波 Mach-Zehnder 调制器仿真分析)的基础上,该示例由反向偏置 pn 结进行相位调制,由 Al 共面传输线驱动。该示例的演示目标是找到具有最佳品质因数的设计,相移、损耗和速度失配等结果与所选输入,掺杂和电极形状等参数的函数关系。分立的器件电学、光学以及RF模型都将被导入到optiSLang当中,并在optiSLang建立元模型,对大量输入进行优化以找到最佳设计。此外,还可以将INTERCONNECT添加到optiSLang中计算误码率。

步骤1:运行多物理仿真获得初始结果

使用 Charge 仿真得到调制区在不同偏压 (-0.4V~4V) 的载流子分布,并导出  monitor_charge 的结果。

 

不同偏压下电荷密度分布

 

使用 MODE 计算在上述载流子的分布下,整个波导的损耗、群折射率以及等效折射率等。

 

使用 HFSS 计算行波电极在 10-100GHz 下的损耗,端口阻抗,等效折射率等。

以上参数将被作为optiSLang的输入参数,用于后续的模型建立和优化当中。更多详细信息可参考Ansys Lumerical 行波 Mach-Zehnder 调制器仿真分析。

 

步骤2:创建系统响应的元模型

optiSLang优化文件由三个主要模块组成,参数敏感性分析、元模型模块和优化算法模块。

首先,参数敏感性分析与品质因数相关联,在本例中是通过提供CHARGE、MODE和HFSS 文件的仿真脚本和仿真数据的来完成,将仿真数据导入到optiSLang并识别输入和响应即可建立初始的元模型,用于对结果优化和可视化。

其次,将参数敏感性分析应用于系统以建立系统的元模型,元模型优化主要关注三个品质因数(FOM):最小化速度失配、最小化损耗和增大与电压相关的相移(最小化Vpi/Lpi)。这些在Criteria选项中指定。

 

变参仅仅针对调制器掺杂浓度和掺杂位置(n,p),以及电极形状等 6 个参数:


找到适当数量的样本很重要,器件级仿真运行的次数与“Adaption”选项中指定的相同,增加仿真次数提升优化后模型性能,但同时也增加完成优化所需的时间,可以通过勾选“show advanced setting”来设置采样选项,本例中选择了“Advanced Latin Hypercube Sampling”,包含60个初始样本,在局部CoP(预测系数)和优化标准的重要性之间采用70:30比例。此外,还设置了每次迭代12个样本,至少6次迭代来生成元模型。运行后,每个独立设计的结果将记录在“Result designs”中,元模型就生成了。

 

后处理结果的模型质量记录在CoP矩阵,基于统计的思想通过一个预测质量的关键指标预测系数(CoP – Coefficient of Prognosis)来评估对实际模型的预测质量。CoP的值越大表明预测得到的模型准确性更高。通常在二维或三维图像基础上,辅以各点的不同颜色配合色块来说明各个参数对模型目标函数的函数值的影响。每个输入参数的总有效性用红色表示,单击这些值中的每一个也会更新3D曲面图,代表输出对指定输入的依赖性。下图是Vpi_Lpi作为n和p掺杂值的函数的例子:

 

 

从上述步骤,我们通过参数敏感性分析了解到我们创建的元模型可以准确预测在优化过程中的系统表现,因此可以继续进行后续大量的变参优化步骤,以确定最佳设计。

步骤3:优化和获得最佳设计

通过参数敏感性分析了解设计参数和设计目标的设计行为,并使用结果支持我们的优化算法。这是一个多目标优化,自动运行数千种敏感性和优化设计,可以得到一组最佳设计,称为帕累托前展面(Pareto Frontier)。所有设计条件的品质因数都显示在帕累托图中,可以左键单击并拖动以放大代表最佳设计的帕累托前展面。

在本例中,我们关注获得最佳相移、损耗和速度失配输出,在后处理页面的视图部分拖动“3D Cloud Plot”,可以获得三个品质因数所有设计的概览。最佳设计是所有位于plot边缘的点(即上述帕累托前展面)。为了能够更好地观察这些设计,点击“Select best design(s)”,点击“Invert selection”,然后在图上右键单击并选择“deactivate”:

 

如前所述,会有几个设计都提示是最佳设计,因为在FOM之间必然会有妥协。根据模型需求或优化优先级的不同,最终的选择可能不同。点击任意一点都会更新对应输入值和结果绘图,在这里我们可以看到对应掺杂浓度、偏移量和电极参数确定值,以及所选最佳设计的对应结果。

此外,本例中还能进一步在参数求解系统中引入INTERCONNECT用以获得误码率(BER),获得的参数可以进一步更新模型并将监测与初始设计相比误码率的降低情况。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭