随着健康监测、运动追踪等功能的不断升级,可穿戴设备已成为生活与医疗领域的重要工具。然而,功能集成度的提升与电池续航能力的矛盾日益突出,每日充电的需求严重影响用户体验。在此背景下,能量收集技术与超低功耗集成电路(ICs)的融合,为实现可穿戴设备 “自供能” 提供了突破性解决方案,正在重塑行业发展格局。
在物联网、工业自动化、可穿戴设备等领域,传感器作为数据采集的核心部件,其工作稳定性与数据准确性直接决定系统性能。而传感器激励作为启动与维持其工作的关键环节,对供电稳定性、能量供给精度及功耗控制提出了严苛要求。传统激励方案往往存在功耗过高、续航不足、适配性差等问题,尤其在电池供电的便携式设备中,这一矛盾更为突出。低功耗解决方案的出现,通过精准匹配传感器激励需求、优化能量分配机制,有效破解了这一行业痛点,为传感器技术的广泛应用注入了新活力。
当前,智能网联汽车正重塑全球汽车产业格局,成为衡量国家汽车产业竞争力的核心标志。我国在这一赛道上已实现“硬指标”的技术突破与“软实力”的生态构建同步推进,形成了从核心技术到产业生态、从基础设施到政策标准的全方位发展优势,正加速迈向全球智能网联汽车产业发展的第一梯队。
当前,人工智能正以不可逆转之势全面融入工业化进程,成为重塑产业形态、变革生产方式的核心引擎。从国家战略部署到企业实践探索,从技术突破到场景落地,人工智能与工业经济的深度耦合,正推动工业化从数字化转型迈向智能化重构,为高质量发展注入强劲动能。这一融合并非偶然,而是技术革命与产业升级协同演进的历史必然,标志着全球工业发展进入新的历史阶段。
在电子电路设计中,接地(GND)是保障系统稳定性、抑制电磁干扰(EMI)的核心环节,其本质是为电路提供稳定的电位参考和顺畅的电流回流路径。理想状态下,GND应是等电势的“零电位点”,但实际设计中,为解决特定功能需求或EMC问题,常会在GND中串入电阻、磁珠或电感等元件。这些元件的引入会改变GND的电气特性,产生差异化影响。深入理解其作用机制与潜在风险,是实现精准电路设计的关键。
在电力电子电路设计中,MOS管(金属-氧化物半导体场效应晶体管)凭借低导通电阻、高开关速度及电压控制的优势,成为电阻分压电路中实现精准通断控制的核心器件,广泛应用于电源管理、信号调理等领域。然而在实际应用中,MOS管关断瞬间常出现漏源极电压(V)超出稳态值的过冲现象,这种瞬时高压可能击穿MOS管、损坏分压电阻及后端负载,严重威胁电路稳定性与可靠性。深入探究过冲产生的根源,是优化电路设计、规避失效风险的关键。结合电路特性与实际应用场景,MOS管控制电阻分压关断过冲的成因主要源于寄生参数耦合、驱动电路特性偏差及负载与分压网络匹配失衡三大核心因素,具体分析如下。
随着汽车产业向电动化、智能化、网联化加速转型,汽车系统的复杂度呈指数级增长,从传统的动力传动系统到先进的自动驾驶、车载信息娱乐系统,每一个环节的稳定运行都直接关乎驾乘安全与出行体验。在构成汽车电子系统的众多元器件中,无源器件虽无主动放大或控制功能,却占据了总量的70%以上,是保障系统可靠性的“基石”。电阻、电容、电感、滤波器等无源器件的性能优劣与应用合理性,直接决定了汽车电子系统的稳定性、耐久性与安全性。因此,通过精心选择并科学使用无源器件,成为确保汽车系统可靠性的关键路径。
在PCB(印刷电路板)设计中,导热过孔是实现热量垂直传导的关键结构,广泛应用于电源模块、处理器、汽车电子等高热流密度场景。细心观察会发现,不少导热过孔周边会分布着若干无网络的小焊盘——这些不连接任何电路网络的铜质结构看似多余,实则是保障PCB热性能、机械可靠性与装配稳定性的重要设计。
在智能交通体系的演进中,车路协同系统通过“车辆感知+路侧感知”的双向融合,构建起“车-路-云-人”的立体化交通生态,而激光雷达传感器凭借其毫米级测距精度、全天时环境适应性和三维空间感知能力,成为突破传统感知瓶颈、实现系统高效协同的核心支撑。从车载端的局部精准探测到路侧端的全局视野覆盖,激光雷达的深度应用正在重塑交通感知逻辑,为安全出行与高效通行注入核心动力。
随着全球能源转型加速,电动汽车已成为汽车产业升级的核心方向。然而,续航焦虑、安全担忧、成本高企等问题仍制约着其大规模普及。作为电动汽车动力电池的“智慧大脑”,电池管理系统(BMS)的技术创新正从根本上破解这些痛点,通过提升安全性、优化能效、降低成本,为电动汽车渗透率的提升注入核心动力。数据显示,2025年中国新能源汽车渗透率已突破44%,而BMS相关技术突破贡献率超过30%,充分印证了其关键价值。