现代示波器和数字化仪变得越来越好。更高的带宽、更好的垂直分辨率和更长的采集存储器。更不用说更多用于特定应用测量的固件工具了。借助所有这些高级分析功能,有时很难记住一些非常古老且简单的规则,这些规则可以提高测量的准确性和精度。以下是一些可以提供帮助的好主意。
电源变压器通常是隔离开关电源转换器中共模噪声的主要来源。为什么?因为在变压器内部,隔离栅初级侧和次级侧的绕组非常接近(通常间隔小于 1 毫米),导致相邻绕组之间存在显着的寄生电容。
PCB 上的元件温度高于预期的情况是相当常见的。通常,控制此类组件热量的方法是 (a) 在其下方创建一个尽可能坚固的铜焊盘,然后 (b) 在焊盘与焊盘下方某处的导热表面之间放置通孔。此类通孔称为“热通孔”。这个想法是,散热通孔会将热量从焊盘传导走,从而有助于控制热组件的温度。
I 2 R的单位为焦耳/秒;它是向迹线提供能量的速率。如果我们无限期地将这种能量施加到迹线上,迹线的温度将无限期地继续升高。这种情况不会发生,因为有相应的冷却效果可以冷却走线。这些效应包括通过电介质的传导、通过空气的对流以及远离走线的辐射。
成功开发和推出嵌入式系统需要各种工程学科的广泛技能。每个嵌入式系统开发团队都需要八个不同的软件开发领域的知识。开发人员对嵌入式软件这八个支柱的掌握程度将直接影响开发成本、代码可扩展性和系统稳健性等关键开发指标。
测试自动化已成为快节奏的软件行业的强制性要求。它有助于快速测试应用程序的功能、稳定性、性能和安全性。另外,持续测试使用测试自动化使我们能够向最终用户提供高质量的应用程序。
DC/DC转换器是开关电源芯片,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。
供暖、通风和空调 (HVAC) 系统使用传感器来调节机电设备的运行。运行该设备通常消耗的能量占每月电费的很大一部分。当室外温度低于室温时,供暖负荷就会增加。相反,当室外温度高于室温时,冷负荷就会增加。
在现代电子设备中,反激电源因其结构简单、成本低廉和易于设计等优点而被广泛应用。然而,反激电源在工作过程中会产生大量的电磁干扰(EMI),这不仅会影响设备自身的性能,还可能对周围的电子设备造成干扰,甚至破坏。因此,如何有效抑制反激电源的EMI,成为了电子工程师们亟待解决的重要课题。
本系列关于低 EMI 印刷电路板设计的第 3 部分讨论了分区,以及为什么在电路板介电空间内防止“嘈杂”信号场交叉耦合到“安静”信号场很重要。在本文中,我将提供有关分区的更多详细信息。虽然分区的概念很简单,但真正的主板通常需要更多的思考。
本系列的第 1 部分介绍了数字信号如何通过 PC 板传播,第 2 部分介绍了实现低 EMI 的特定板层叠设计。第 3 部分将讨论电路部分的分区、高速走线的布线以及其他一些有助于降低 EMI 的布局实践。
本系列的第 1 部分描述了数字信号如何通过 PCB 板传播。 1、2、5、6]。在第 2 部分中,我们将研究实现低 EMI 的特定电路板设计。我在客户的电路板设计中看到的最大问题是层堆叠不良。
在帮助客户使其产品符合 EMI 要求后,我发现了一个根本问题:印刷电路板设计不佳。根据我的经验,物联网产品设计人员会遇到因印刷电路板设计不良而导致的问题。当板载能源破坏敏感的接收器电路时,不良的设计可能会导致无限的延迟,从而导致蜂窝合规性失败。 GPS 和 Wi-Fi 接收器也会失去灵敏度。
随着电子设备对在更小的封装中进行更多处理的需求不断增长,当今任何电源的首要任务都是功率密度。最流行的隔离式电源拓扑是反激式,但传统反激式的漏电和开关损耗限制了开关频率并阻碍了实现小解决方案尺寸的能力。幸运的是,有新的方法可以优化反激式拓扑,以产生更高的效率,即使以更高的频率进行开关也是如此。
单元测试是防止错误的第一道防线。这种级别的保护至关重要,因为它为以下测试过程奠定了基础:集成测试、验收测试以及最后的手动测试,包括探索性测试。