当前位置:首页 > 模拟 > 模拟

引言

在地质勘探中,为了确定地层侧面倾角和倾斜方位角,必须连续测量井筒的倾角和倾斜方位角以及作为参考标志的井下仪器方位角。在进行钻井或打水平井时需要知道井身轨迹和钻头位置,以调整下一步的钻进方向。因此无论是完井之后或是在钻井过程中,高精度且连续的井斜测量是必须的。

西安石油大学研制的xtcs(西安轨迹控制系统),安装了加速度传感器来测量井下仪器运动姿态的井斜角(DEV)和工具面角(RB)。但是因为安装的原因,即使精心调校,也不可避免地存在加速度传感器的三轴不正交而引起的偏差,这个偏差对最后的测斜结果有不可忽视的影响,因此加速度传感器在使用时要进行标定。

加速度计三轴不正交校正原理(Q校)

设{x}halfnote_{}^{→}、{y}halfnote_{}^{→} 、{z}halfnote_{}^{→}线性无关的三个向量,由它们可以构成一个空间坐标系,空间中的任何向量都可以表示成这三个向量的线性组合。从理论上可知,在空间坐标系中存在着一种单位正交坐标系,即构成坐标系的三向量相互垂直,其长度都等于1。空间任意坐标系和单位正交坐标系之间存在如下的对应关系:


Q值计算方法

由上可知,要进行传感器校正,必须先确定Q值,通过准确测量传感器的安装位置来确定Q比较困难,而用计算的方法则简单可行。已知重力加速度{G}halfnote_{}^{→}在正交坐标系中的三个分量是 G_{x}、G_{y}、G_{z},反映仪器空间位置的几个参数为井斜角(DEV)、工具面角(RB)和相对方位角(AZIM)(由于在传感器中没有加入磁强计,因此无法测量相对方位角,不予考虑)。其中井斜角和工具面角与 {G}halfnote_{}^{→}的关系为:

由于传感器定位安装方面的原因,实际测量的 G_{x}、G_{y}、G_{z} 是不正交的分量,为此需要用式(7)进行校正,然后才用式(8)和(9)确定仪器在井中的状态。显然,在不同的Q值下计算出的三个角度是不同的,它们都是Q的函数

其中g是测量值,Q是待定系数,且g=(g_{x}g_{y}g_{z})^{T}, Q=(θ_{1},θ_{2},θ_{3})^{T}。由式(10)可知,任意给出一组Q值,便可计算出一组与测量值相对应的DEV,RB值。因此只要Q值选择合适,就可以将轴不正交误差减到最小,这个Q值就是我们希望得到的校正系数Q。
上述过程在数学上可表示为:

利用Matlab计算Q系数
Matlab是美国MathWorks公司开发的一个功能十分强大的高技术计算环境,是一种面向科学和工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图象处理等于一体,具有极高的编程效率。

Matlab目前有30多个工具箱,优化工具箱(Opuimization Toolbox)就是其中应用较广泛、影响较大的一个。优化工具箱特点:无约束非线性函数的极小化问题;非线性最小二乘;非线性方程的求解;线性规划;二次规划;约束条件下非线性函数的极小化问题;非负线性最小二乘;极大极小多目标优化;半无穷极小化问题。Matlab具有强大的解决数值问题的能力及可扩充的环境,非常适合解决优化问题。

加速度传感器标定数据处理软件对目标函数的求解采用非线性最小二乘法进行曲线拟和,为了便于计算,在求解目标函数的过程中将工具面角的加权因子设为0,则目标函数就变为ΔDEV=sum_{}^{}(DEV-DEV_{0})^{2},利用Matlab寻优工具箱中的非线性最小二乘拟和函数求解目标函数。下面简单介绍一下用到的lsqonlin函数。

Lsqnonlin函数解决非线性最小二乘问题。
语法结构:x=lsqnolin(fun,x_{0})
1) 该函数处理的是非线性最小均方差问题,即:min{sum[FUN(x)2]},其中x为返回的值或矢量。
2) lsqonlin从x0的初值开始,最后到满足函数FUN(x)均方误差和最小的x值返回,也即在x处ΣFUN(x)2有最小值。

结论

在实验室对加速度传感器进行标定实验获得的数据,通过上述方法进行处理,得到Q校正处理和未校正处理计算的井斜角(DEV)和工具面角(RB),对比如表1所示。传感器标定数据经过不正交校正处理后井斜角和工具面角更接近真值,计算反映标定数据精确度的井斜角和工具面角的均方根误差分别从0.32o、0.77o降低到0.12o、0.21o。

对于设计开发人员而言,众多电气组件接近所造成的"噪声"环境,由此而产生的电磁兼容性(EMC)和电磁干扰(EMI)是他们关心的主要问题。为了应对这一设计挑战,飞思卡尔半导体推出了可扩展微控制器(MCU)系列,帮助工程师降低大型家电和工业应用中的噪声。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

如同造纸术的改良推动了人类文明的传承、蒸汽机的改进催生了工业革命,在人类历史上,创新的工具引领了影响深远的变革。今天,大模型发展如火如荼,但企业在大模型应用落地过程中仍需要解决幻觉、开发难度大、适配迁移难、试错成本高等系...

关键字: AI 数据处理 大模型

随着大数据时代的到来,数据处理成为了一项至关重要的任务。传统的数据处理方法往往面临着效率低下、准确性不高等问题,而机器学习技术的兴起为数据处理带来了全新的解决方案。本文将深入探讨机器学习在数据处理中的应用,并分析其优势和...

关键字: 数据处理 计算机 机器学习

分布式放大器是一种特殊的放大器设计,其基本原理是将放大功能分布在整个传输线路中,从而实现对信号的有效放大,以下是几种不同类型的分布式放大器的详细介绍:

关键字: 放大器 测量系统 调零

随着信息技术的飞速发展和大数据时代的到来,数据挖掘和机器学习作为数据处理的两大核心技术,在各行各业中发挥着越来越重要的作用。然而,尽管数据挖掘和机器学习在很多方面存在交集,但它们各自具有独特的定义、方法和应用场景。本文旨...

关键字: 数据挖掘 机器学习 数据处理

随着信息技术的飞速发展,云计算作为一种新兴的计算模式,正在逐步改变着传统的数据处理和应用方式。云计算通过整合大量分布式计算资源,为用户提供高效、灵活、安全的数据存储和计算服务。在当前数字化、网络化、智能化的时代背景下,云...

关键字: 云计算 数据处理 智能化

随着科技的不断进步,6轴传感器在现代机器人技术、航空航天、汽车工程等领域的应用越来越广泛。它能够提供三维空间中的线性加速度和角速度信息,为各种精密控制和导航提供关键数据。本文将详细探讨6轴传感器的工作原理、组成部分、应用...

关键字: 6轴传感器 加速度计 陀螺仪

随着信息技术的飞速发展,数据处理和传输速度的要求越来越高,从而催生了高速器件技术的迅速崛起。高速器件,也称为高频器件或高速集成电路,是指能够在高频或高速条件下工作的电子器件。它们在现代通信系统、计算机、雷达、电子对抗、高...

关键字: 数据处理 高速器件 通信系统

随着现代科技的不断进步,传感器技术已成为众多领域不可或缺的关键要素。其中,六轴传感器以其独特的功能和广泛的应用场景,逐渐成为了传感器领域中的佼佼者。本文将对六轴传感器的优势进行深入探讨,并分析其在不同领域的应用前景。

关键字: 陀螺仪 六轴传感器 加速度计

随着信息技术的迅猛发展,服务器作为数据处理和存储的核心设备,在企业信息化建设中扮演着至关重要的角色。华为作为全球信息与通信技术解决方案的领先供应商,其服务器产品凭借卓越的性能、创新的技术和稳定的品质,在市场上赢得了广泛的...

关键字: 服务器 数据处理 华为

北京时间 12月26日,南京翼辉爱智物联技术有限公司推出的家庭超能盒——XSpirit 2 所搭载的 EdgerOS 迎来重大版本更新。在新版本中,增加了全新的投屏助手功能,并对已有的小智快存、爱智家、打印机和远程电脑四...

关键字: 物联网 数据处理 投屏助手
关闭
关闭