当前位置:首页 > 模拟 > 模拟
[导读] 引 言 可变增益放大器是GPS接收机中的一个关键模块,它与反馈环路组成的自动增益控制电路为模/数转换器(ADC)提供恒定的信号功率。模拟信号控制增益的VGA增益连续变化,但是线性度较差。 这里采用电阻形式

 引 言
    可变增益放大器是GPS接收机中的一个关键模块,它与反馈环路组成的自动增益控制电路为模/数转换器(ADC)提供恒定的信号功率。模拟信号控制增益的VGA增益连续变化,但是线性度较差。
    这里采用电阻形式的负反馈的放大器来设计一个0~30 dB增益变化的中频可变增益放大器,VGA的增益精度并不取决于工艺、电压和温度等因素对电阻、MOS管开关的影响,增益误差在各个工艺角下都小于5%。


1 可变增益放大器原理
    模拟电路需要对信号进行放大或衰减,这一功能可由可变增益放大器(VGA)实现。它在无线通信的收/发信机模拟前端中,起着至关重要的作用。图1是用于GPS的接收机模拟前端图。处于基波频率的VGA补偿射频模块和中频模块的增益衰减;VGA将输出信号放大到A/D转换器需要的幅度。AGC环路改变接收机的增益,调整各级信号动态范围,稳定输出信号功率的作用。

    对于VGA电路,IIP3和THD是重要的指标,因为它的输出信号幅度很大。其次,为了实现宽增益范围调节,同时保持不同增益输入功率下恒定的输出建立时间,要求VGA的增益与控制电压成dB线性。VGA增益步长越小越精确,则对ADC的要求越降低。在文中,数字控制的VGA电路提供了30 dB的增益控制范围,使用7b精确控制增益大小,所耗面积和功耗小。


2 可变增益放大器结构与性能比较
    VGA主要分为开环和闭环两种结构。一种常见的开环结构是文献[1]采用的Gilbert结构,如图2所示电路。Ms上加一个基准电压,电压Vc控制耦合电流的大小,起到改变增益的作用。但是此结构电路堆叠了四层电路,限制了输出电压的摆幅,而且此电路不能实现指数增益的控制。这些运用最广泛的开环结构中,可变增益放大器主要基于简单差分,或者是伪差分对,使用源极反馈技术,模拟乘法器和使用二极管连接的MOS管作为负载等技术。这些结构最大的问题就是线性度和失真度的问题。
    因为负反馈电路具有稳定输出,降低非线性失真的作用,所以闭环结构呈现更好的线性度。常见的闭环电路结构中的VGA使用电阻阵列实现增益控制,例如将电阻和MOS管串联,控制MOS管开关的通断状态实现阻值的变化,进而改变放大器的增益。因为继承电路中的电阻、MOS管开关都受到工艺、电压、温度的影响,难以实现精确的阻值,所以PGA的增益精度有限。文献[9]使用电流分割技术,实现了精确的增益控制,文献[10]对电阻网络进行了改进,但是这些电路复杂,额外电路也增加了功耗。这里在没有增加任何设计复杂性的情况下,实现了较为精确的增益控制。


3 高性能VGA结构和实现
    为了达到要求的增益控制范围和步长,使用两个级联的VGA。第一个部分的VGA实现6 dB步长的增益控制,另一个部分实现精准的O.5 dB步长。因此整个VGA实现了粗调和细调(见图2)。

    当运算放大器的增益足够大时,闭环VGA的增益等于两个电阻的比值:Gain=-Rf/Rs,改变电阻可以实现增益的变化。粗调的阻值变化很大,改变反馈Rf,会影响粗调输出节点的极点;电阻Rs可变,它对前级将形成变化的负载效应。选择改变Rs,在前级增加缓冲电路进行隔离。
    首先进行第一级6 dB步长增益的考虑:取Rf=R0,Rs=R1,实现3 dB的增益,那么Rf不变,Rs=2R1,则实现9 dB的增益。同理:当Rs=4R1,实现15 dB增益;当Rs=8R1,实现21 dB增益;当Rs=16R1,实现27 dB增益。
    为了更好地匹配,对与电阻串联的MOS管开关尺寸按图3比例设计,Rs等于MOS管的导通电阻和多晶硅电阻,MOS导通电阻与W/L成反比。

    再考虑第二级O.5 dB步长增益可以发现,O.95转化为dB值等于-0.445 5 dB。0.9为-0.915 dB,0.85为-1.412 dB,O.8为-1.938 dB,0.75为-2.499 dB,O.7为-3.098 dB。1~0.7之间O.05的间隔对应于dB中基本接近于0.5 dB的间隔。使用这个规律,设计可以如下:

   
    两级VGA就可以实现O~29.5 dB(2.5 dB+27 dB=29.5 dB)增益控制,且步长可以比较精准地达到O.5 dB。由于设计中用的都是电阻的相对值,所以电阻、MOS管开关都受到工艺电压和温度等因素VGA的增益精度的影响会很小。
    如图4所示,可变电阻R1是用多晶硅电阻和工作在晶体管区的MOS开关来实现的。开关电阻通常被用在低失真可调模拟模块。MOS晶体管的非线性将产生谐波以及交调失真,这将会降低整个电路的线性度。在文献[11]中,推导出一个近似的公式来接近开关管的非线性特性。

    输入电压Vin被转换成非线性电流Iin流入电流模式的VGA放大器。在弱非线性网络中,已经使用Vol-terra级数推导出非线性谐波失真(HD2和HD3)。

   
式中:Vin是输入的电压的峰值;R1等于R1α+Rds的总和;α2,α3是二次、三次非线性系数。因此如果把开关管放置在运放的虚地端(即运放的输入端),则HD2和HD3近似等于0。


4 版图与后仿真结果
    图5是用SMIC 0.18μm CMOS工艺实现的VGA版图,芯片面积为:510μm×160μm,整个版图包括VGA核心部分,直流偏移消除模块,和CMOS源极跟随缓冲电路,恒定Gm的偏置电路。

    图6~图8给出了VGA在Candence环境下用Spectre工具模拟得到的后仿真结果。图6为输入阶越跳变,得到的输出瞬态响应曲线。

    图7为不同的数字增益设置对应的VGA增益。图8是放大器不同增益的频域响应。其增益从0 dB变化到29.5 dB,其中0.5 dB一档。


5 结 语
    本文介绍一种O.18μm CMOS工艺实现,应用于GPS全球定位系统得可变增益放大器。文中巧妙地应用反馈系统中环路稳定性理论设计放大器;在增益步长的控制上,增益随bit线性化,并保证增益精度不受工艺角偏差影响。仿真结果表明,该放大器适合在接收机模拟前端中使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

腾盛博药生物科技有限公司公布了两项在美国健康志愿者中开展的评估长效BRII-732和BRII-778的1期研究最新数据,这两种在研候选药物旨在用于治疗人类免疫缺陷病毒(HIV)感染。两项研究结果均表明,BRII-732和...

关键字: FIR ST RS

成都2022年10月19日 /美通社/ -- 近期,平安养老险积极筹备个人养老金的产品设计和系统开发工作,发展多样化的养老金融产品,推动商业养老保险、个人养老金、专属商业养老保险等产品供给。 搭养老政策东风 ...

关键字: 温度 BSP 东风 大众

广东佛山2022年10月19日 /美通社/ -- 空间是人居生活的基础单元,承载着生存与活动的最基本功能。而对于理想空间的解构意义却在物理性容器之外,体现出人们对于空间和生活深层关系的思考,同时也塑造着人与空间的新型连接...

关键字: 温度 BSP 智能化 进程

上海2022年10月19日 /美通社/ -- 10月17日晚间,安集科技披露业绩预告。今年前三季度,公司预计实现营业收入7.54亿元至8.33亿元,同比增长60.24%至77.03%;归母净利润预计为1.73亿...

关键字: 电子 安集科技 BSP EPS

北京2022年10月19日 /美通社/ -- 10月18日,北京市经济和信息化局发布2022年度第一批北京市市级企业技术中心创建名单的通知,诺诚健华正式获得"北京市企业技术中心"认定。 北京市企业技...

关键字: BSP ARMA COM 代码

北京2022年10月18日 /美通社/ -- 10月14日,国际数据公司(IDC)发布《2022Q2中国软件定义存储及超融合市场研究报告》,报告显示:2022年上半年浪潮超融合销售额同比增长59.4%,近5倍于...

关键字: IDC BSP 数字化 数据中心

上海2022年10月18日 /美通社/ -- 2022年9月5日,是首都银行集团成立60周年的纪念日。趁着首都银行集团成立60周年与首都银行(中国)在华深耕经营12年的“大日子”,围绕作为外资金融机构对在华战略的构想和业...

关键字: 数字化 BSP 供应链 控制

东京2022年10月18日  /美通社/ -- NIPPON EXPRESS HOLDINGS株式会社(NIPPON EXPRESS HOLDINGS, INC.)旗下集团公司上海通运国际物流有限公司(Nipp...

关键字: 温控 精密仪器 半导体制造 BSP

广州2022年10月18日 /美通社/ -- 10月15日,第 132 届中国进出口商品交易会("广交会")于"云端"开幕。本届广交会上高新技术企业云集,展出的智能产品超过140,...

关键字: 中国智造 BSP 手机 CAN

由国际投资移民咨询公司Henley & Partners发布的《亿万富翁报告》指出,在20世纪90年代末期,3000万美元被认为是“超级富豪”的定义,但自那时以来,资产价格大幅上涨,使1亿美元成为新的基准。尽管美...

关键字: RS

模拟

31144 篇文章

关注

发布文章

编辑精选

技术子站

关闭