[导读]将等精度频率测量原理巧妙地用MCU+CPLD实现,设计了一种低成本、高性价比的频率计方案。MCU选择STC89C52RC,CPLD选择Atmel公司的ATF1504AS,实现了宽范围高精度的频率测量。该方案具有结构简单,成本低等优点,具有广阔的市场前景。
引言
频率的概念就是1 s时间内被测信号的周期个数,最直接的测量方法就是单位时间内计数法,这种方法比较适合高频测量。低频通常用测周期法。这两种方法的测量精度不固定,与被测信号的范围相关。
等精度频率测量法融合以上两种方法的优点,可兼顾低频与高频信号;但较以上两种方法而言,等精度频率测量有较高的测量精度,且误差不会随着被测信号频率的改变而改变。
1等精度频率测量原理
等精度频率测量原理框图如图1所示。图中计数器是带使能控制的32位计数器,EN是计数允许使能信号,高电平允许计数。计数器1对基准时钟信号fb计数,计数器2对被测信号fx计数。D触发器实现对被测信号fx上升沿检测,实现门控信号与fx上升沿同步,从而保证计数器2对被测信号计数刚好为整数个周期,零误差。
测量过程控制时序波形如图2所示。测量开始,t0时刻MCU发出一个清零信号Clr,使计数器和D触发器置0;t1时刻MCU发出测量启动信号Gate,使D触发器输人D为高电平;在被测信号fb上升沿到来t2时刻,D触发器Q端才被置1,使计数器1和计数器2的EN同时为1,计数器开始计数,系统进入计数允许周期。这时,计数器1和2分别对基准时钟信号和被测信号同时计数。一段时间过后,t3时刻MCU发出停止信号,即D触发器输入D为低电平,但此时计数器仍然没有停止计数,直到下一个被测信号的上升沿t4时刻到来时,D触发器Q输出0将这2个计数器同时关闭。
由图2可见,Gate的宽度Tc和发生的时间都不会直接影响计数使能信号EN,EN总是在被测信号fx上升沿改变,从而保证了被测信号被计数的周期总是整数个周期nTx,而与被测信号的频率无关。正确理解这点,是理解等精度频率测量的关键。由于测量过程中不能保证基准时钟周期的完整性,还会引入测量误差。这种随机误差dt最多只有基准时钟fb信号的一个时钟周期。由于fb的信号通常由高稳定度的高频晶体振荡器发出,任何时刻的绝对测量误差只有1/N1。例如,对于门控信号接近1 s的测量过程,fb取100 MHz的晶振,最大误差可以达到10-8。
2方案设计
2.1系统方案
单片机定时器/计数器电路如图3所示。当C/T=0,TR=1,GATE=1时,单片机内部计数器时钟开关可受外部引脚INTn控制,这样就可以实现单片机内部计数器与外部计数器同步开关。
正是基于单片机这种电路结构,根据等精度原理,提出图4所示的系统框图。单片机加CPLD结构,利用单片机内部定时器定时,外部CPLD实现等精度测量逻辑电路和计数功能。基准时钟fb由单片机晶振提供,频率为单片机时钟晶振12分频后所得机器时钟。预置闸门由单片机引脚P1.0输出控制,计数器清零和复位由单片机引脚P1.1输出控制,单片机引脚P3.2是内部定时器使能开关控制引脚。
2.2单片机与CPLD接口设计
图5所示为一种基于总线的接口方案,采用三总线(数据、控制、地址)结构,用于实现单片机与CPLD之间的数据传输。
单片机P0口为双向数据总线,与CPLD的通用IO口连接,完成数据和低8位地址传送。控制总线包括单片机读写控制总线RD和WR,以及地址锁存信号ALE(Address Lock Enable)。地址总线A15(P2.7)通过CPLD的全局输入信号引脚输入。
2.3 CPLD电路
CPLD内部电路原理框图如图6所示。当预置闸门GATE输入高电平时,由于DFF触发器为边沿触发器,在上升沿时才将数据输出,所以Q输出端并不立即置1,只有当外部信号上升沿到来时,Q才为1,使能计数器和定时器。这样保证了计数器和定时器在被测信号的上升沿到来时同时有效。当预置闸门GATE=0关闭时,两计数器的允许信号同样在被测信号的上升沿到来时同时关闭。由于基准信号的定时器与被测信号严格同步,所以理论上最大误差只有基频的一个周期。CPLD内计数器为32位,在预置时间内,只要计数器不溢出,即可准确测量被测信号个数。
3方案实现
3.1电路原理
电路原理如图7所示。图中给出了单片机(STC89C52RC)与CPLD(ATF1504AS)的具体接口电路,LCD1602接口电路,带ISP下载接口的CPLD电路,被测信号从J1直接输入给CPLD I/O引脚。这里没有给出信号前置调理与波形整形电路。
3.2 CPLD电路设计
CPLD开发选择Altera公司的EDA软件QuartusII和目标器件EPM7064SLC44=10,需要完成电路设计输入、编译、仿真、引脚绑定(引脚分配请参考电路图),并编译得到最终配置文件*.pof。然后再使用Atmel公司提供的转换工具POF2JED软件将前面得到的*.pof文件转换成*.jed文件,再用AtmelISP软件将*.jed文件下载到CPLD器件ATF1504即可。
以下是采用VerilogHDL硬件描述语言设计的CPLD内部电路源码:
3.3程序设计
整个测量过程由MCU控制完成,然后计算并把结果送LCD显示。测量开始,MCU首先发出清零CLR信号,对外部CPLD电路复位和计数器清零,还要将定时器软计数器清零,之后发出启动信号GATE=1,测量开始。MCU通过查询软计数器(定时中断加1),控制闸门时间大致在1 s左右,时间到,MCU立即发出停止信号GATE=0,随后查询引脚INT0,确认计数停止。之后,分别读回外部计数和内部计数器计数结果,MCU根据等精度原理算出信号频率,将结果送LCD显示。程序主流程和定时中断流程如图8所示。
4测试结果
笔者在实验室使用RIGOL-DG1015DDS信号发生器校准。通过修正单片机时钟偏差,22.118 4 MHz的12分频为1.843 2 MHz,对1 843 200 Hz修正86.95 Hz后带入程序计算,整数频点测量结果可以达到和信号发生器完全一致,接近零误差。特针对一些非整数频点进行测量,结果如表1所列,误差达到10-7数量级,与理论值一致。
由于系统采用的是单片机机器时钟作为基准信号时钟,基准信号频率较低,使得测量精度不高;如果采用外部更高频基准信号做时钟信号,精度还可进一步提高。
结语
将等精度频率测量原理巧妙地用MCU+CPLD实现,设计了一种低成本、高性价比的频率计方案。MCU选择STC89C52RC,CPLD选择Atmel公司的ATF1504AS,实现了宽范围高精度的频率测量。该方案具有结构简单,成本低等优点,具有广阔的市场前景。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
日本车用MCU大厂瑞萨电子发布公告称,该公司将于8月31日完全关闭滋贺工厂,并将土地转让给日本大坂的ARK不动产株式会社。瑞萨电子曾在2018年6月宣布,滋贺工厂将在大约两到三年内关闭,该工厂的硅生产线已于2021年3月...
关键字:
MCU
ARK
芯片
(全球TMT2022年10月17日讯)近日,第17届中国研究生电子设计竞赛全国总决赛评审工作圆满完成。今年,来自全国63个高校的114支参赛队伍报名了TI企业命题,创下历史新高。此次TI的企业命题要求学生基于TI前沿的...
关键字:
电子设计竞赛
TI
MCU
图像处理
单片机诞生于1971年,经历了SCM、MCU、SoC三大阶段。单片机由以前的1位、4位、8位、16位,发展到现在的32位甚至64位。当前国内MCU厂商已有上百家,对标进口芯片的情况非常严重,导致国内MCU产品将陷入同质化...
关键字:
单片机
MCU
市场
摘要:电动设备的传统力矩测控技术测量精度不高,所依赖器件长期稳定性差,为了实现小干扰、高灵敏度的检测要求,提出了相敏电子式交流感应电机力矩检测与控制技术,该方法包括电压和电流采样、信号处理、力矩控制三部分。根据理论研究,...
关键字:
小干扰
稳定性
精度
MH32F103AVET6使用高性能的32位内核,内置了多达2个高级定时器、10个通用定时器、2个基本定时器、3个12位的ADC、2个12位的DAC,还包含标准和先进的通信接口包括:3个SPI接口、2个I2S接口、2个I...
关键字:
单片机
MCU
近年来,伴随着新能源车的生产制造及其对安全性较高驱动力电池的要求,高效率驱动力电池BMS愈来愈获得重视,市场占有率开始疯狂扩大。据统计,2020年我国BMS市场需求规模为97亿元,同比增长6.6%,预计2022年BMS市...
关键字:
雅特力
新能源车
MCU
BMS智能保护板
近日,沁恒微电子一款伍毛级别的RISC-V通用MCU引起行业震动,王炸价格成为众多电子工程师交流讨论的焦点。
关键字:
沁恒
RISC-V
MCU
近日兆易创新 GigaDevice 发布首款基于 Cortex®-M33 内核的 GD32A503 系列车规级微控制器,正式进入车规级 MCU 市场。GD32A503 新品采用 40nm 车规级制程和高速嵌入式闪存 eF...
关键字:
GigaDevice
Cortex®-M33
MCU
XL32F003 系列微控制器采用高性能的 32 位 ARM®Cortex®- M0+ 内核,宽电压工作范围的MCU。嵌入高达64 Kbytes flash和8 Kbytes SRAM存储器,最高工作频率32 MHz。包...
关键字:
单片机
MCU
为增进大家对芯片的认识,本文将对MCU芯片、MCU芯片技术原理以及MCU芯片的应用予以介绍。
关键字:
MCU
芯片
指数
在下述的内容中,小编将会对MCU微控制器的相关消息予以报道,如果MCU微控制器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
关键字:
MCU
微控制器
智能控制
今天,小编将在这篇文章中为大家带来MCU微控制器的有关报道,通过阅读这篇文章,大家可以对MCU微控制器具备清晰的认识,主要内容如下。
关键字:
MCU
微控制器
物联网
MCU微控制器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MCU微控制器的相关情况以及信息有所认识和了解,详细内容如下。
关键字:
MCU
微控制器
芯片
一直以来,MCU微控制器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来MCU微控制器的相关介绍,详细内容请看下文。
关键字:
MCU
微控制器
控制器
在这篇文章中,小编将对MCU微控制器的相关内容和情况加以介绍以帮助大家增进对MCU微控制器的了解程度,和小编一起来阅读以下内容吧。
关键字:
MCU
微控制器
芯片
Holtek新推出具有A/D功能Flash MCU HT66L2540A/HT66L2550A与LCD驱动器功能HT67L2540A/HT67L2550A两个全新Low Power MCU系列。其内建全新高精准低电流LI...
关键字:
HOLTEK
LCD驱动器
MCU
据IoT Analytics数据,2022年活跃连接的物联网设备将达到144亿,2025年将增长至270亿。作为物联设备中必不可少的控制与计算的大脑,MCU也将迎来持续增长。Yole最新数据显示,2022年MCU的市场规...
关键字:
物联网
MCU
AI
边缘计算
英飞凌
作为产品线最广的半导体企业之一,意法半导体(ST)有众多产品应用在可穿戴市场,特别是围绕着MCU(微控制器)和传感器产品两个关键产品系列,意法半导体紧跟市场需求,打造领先的可穿戴技术解决方案。
关键字:
意法半导体
MCU
MCU是家电行业应用较为广泛的芯片。近日,2020~2021年MCU因供应紧缺导致的涨价潮如今遭遇了价格腰斩。其中,小家电的MCU价格下降幅度较为明显。究其原因,一方面下游需求放缓,另一方面此前厂商扩产,如今产能开始释放...
关键字:
意法半导体
MCU
先来看我们喜马拉雅上的一位老粉丝“洪荒少男”的问题。他说RISC-V香山已经开始推广,大学生熟悉一个月就可以上手应用,而后所有的fabless都能比较轻松地搞定,那是否以后的MCU竞争壁垒会下降?我们的粉丝都非常熟悉行业...
关键字:
RISC-V
MCU