当前位置:首页 > 单片机 > 单片机
[导读] cmd文件是编译完成之后链接各个目标文件时,用来指示各个数据、符号等是如何划分到各个段,以及每个段所使用的存储空间的。许多筒子对cmd文件有畏难情绪,不容易理解各个段的含义,特别是在程序编译没有问题,但是在

 cmd文件是编译完成之后链接各个目标文件时,用来指示各个数据、符号等是如何划分到各个段,以及每个段所使用的存储空间的。许多筒子对cmd文件有畏难情绪,不容易理解各个段的含义,特别是在程序编译没有问题,但是在链接生成可执行的.out遇到错误时更容易手足无措,所以我们就来详细解读一下cmd文件的具体含义。

C28x的编译器把存储空间划分为两个部分进行管理,包括:

1. 程序存储空间:包含可执行的代码,初始化的记录和switch-case使用的表。

2. 数据存储空间:包含外部变量,静态变量以及系统的栈;一般情况下,各个寄存器对应的存储空间也归类在数据空间里。

为了方便管理,不同种类的代码、变量等往往又被分别分配到不同的段(section)之中,然后对存储空间的划分就变成了对段的地址分配问题了。例如,在下面的代码中,就规定了.text这个段会存放在RAM中Page0下面的RAML1中,RAML1的起始地址是0x009000,长度是0x001000。

MEMORY

{

/* 省略不在此显示的代码 */

PAGE 0 :

RAML1 : origin = 0x009000, length = 0x001000

RAML2 : origin = 0x00A000, length = 0x001000

/* 省略不在此显示的代码 */

SECTIONS

{

/* 省略不在此显示的代码 */

.text : > RAML1, PAGE = 0

/* 省略不在此显示的代码 */

一般情况下,我们的代码不会大到无法存储,但是也有可能因为代码特别多导致无法存储,产生.text的实际大小是size xxx,但是RAML1的size只有yyy这样的链接错误,以至于无法生成输出文件。此时我们可以把上面对应的RAML1的长度,即length增大,使得.text段所分配的地址空间变多。但是RAML1地址空间扩大之后,挤占了RAML2的空间,导致地址重叠,此时RAML2的起始位置要后移,其长度也要相应地缩减,才能不产生地址覆盖错误;修改之后可以为:

RAML1 : origin = 0x009000, length = 0x001500

RAML2 : origin = 0x00A500, length = 0x000500

还有一个解决方法则是把.text给分配到其它更长的地址空间里去;如果没有现成的地址范围比较长的段,也可以合并现有的段,修改方法比如把RAML2删除,把它的地址全部合并到RAML1中去,而.text还是分配在RAML1,就没有问题了。删除RAML2的时候要注意,它在没有被任何段使用的情况下才能操作,否则编译、链接的时候又提示其它的段找不到对应的存储单元了。

下面我们就解释一下各个段的含义:

一.初始化的段

其中包含了数据和可执行代码,通常情况下是只读的。它们包括:

1 .cinit和.pinit

包含了初始化变量和常量所用的表格,是只读的。

C28x .cinit被限制在16bit范围内,即低64K范围。

2 .const

包含了字符串常量、字符串文字、选择表以及使用const关键字定义(但是不包括volatile类型,并假设使用小内存模型)的只读型变量。

3 .econst

包含了字符串常量,以及使用far关键字定义的全局变量和静态变量。

4 .switch

存放switch-case指令所使用的选择表。

5 .text

通常是只读的,包含所有可执行的代码,以及编译器编译产生的常量。

二.无初始化的段

无初始化的段虽然不会被初始化,但是仍然需要在存储单元(一般是RAM)中保留相关的地址空间。它们包括:

1 .bss

为全局和静态变量保留存储空间。在启动或者程序加载的时候,C/C++的启动程序会把.cinit段中的数据(一般存放在ROM中)复制到.bss段中。

2 .ebss

为far关键字定义(仅适用于C代码)的全局和静态变量保留存储空间。在启动或者程序加载的时候,C/C++的启动程序会把.cinit段中的数据(一般存放在ROM中)复制到.ebss段中。

3 .stack

默认情况下,栈(stack)保存在.stack段中(参考boot.asm),这个段用来为栈保留存储空间。栈(stack)的作用主要有:

1) 保留存储空间用于存储传递给函数的参数;

2) 为局部变量分配相关的地址空间;

3) 保存处理器的状态;

4) 保存函数的返回地址;

5) 保存某些临时变量的值。

需要注意的是,.stack段只能使用低64K地址的数据存储单元,因为CPU的SP寄存器是16位的,它无法读取超过64K的地址范围。此外,编译器无法检查栈的溢出错误(除非我们自己编写某些代码来检测),这将导致错误的输出结果,所以要为栈分配一个相对较大的存储空间,它的默认值是1K字。改变栈的大小的操作可以通过编译器选项--stack_size来完成。

4 .sysmem

为动态内存分配保留存储空间,从而为malloc,calloc,realloc和 new等动态内存分配程序服务。如果这几个动态内存管理函数没有在C/C++代码中用到的话,则不需要创建.sysmem段。

此外,我们经常提到“堆栈”,在这里我们只讲了栈,那堆(heap)是干啥的呢?堆就是是用来做动态内存分配的,因为在DSP上RAM资源仍然是相对宝贵的,所以堆占用的存储空间不能无限扩展,对于near关键字修饰的堆,其占用的地址空间最大只能到32K字;对于far关键字修饰的堆,它使用的存储空间由编译器自动设置,默认只有1K字。

5 .esysmem

为far malloc函数分配动态存储空间。如果没有用到这个函数,则编译器不会自动创建.esysmem段。

对于汇编器,它会自动创建.text, .bss和.data三个段。我们可以使用#pragma CODE_SECTION和#pragma DATA_SECTION来创建更多的段。

默认情况下,各个段所分配的存储空间配置如下(可根据需要进行更改):

最后,以一个ADC寄存器对应的内存地址分配的例子,来看看完成的cmd文件是如何完成的(事实上所有寄存器的内存地址分配在TI的外设和头文件包中已经帮我们做好了,这里是个演示)。

首先,在使用寄存器(或者自定义的变量)的头文件或者源程序里,为寄存器(或者自定义的变量)指定一个自定义的段:

#ifdef __cplusplus

#pragma DATA_SECTION("AdcRegsFile")

#else

#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");

#endif

volatile struct ADC_REGS AdcRegs; //使得结构体被分配在指定的段中

然后,在cmd文件中,在SECTIONS下把AdcRegsFile这个段分配到ADC这块内存区域中,并在MEMORY中定义ADC这块内存区域的起始位置和长度。

MEMORY

{

PAGE 0: /* Program Memory */

/* 省略不相关内容的显示 */

PAGE 1: /* Data Memory */

/* 省略不相关内容的显示 */

ADC : origin = 0x007100, length = 0x000020 /* ADC registers */

/* 省略不相关内容的显示 */

}

SECTIONS

{

/* 省略不相关内容的显示 */

AdcRegsFile : > ADC, PAGE = 1

/* 省略不相关内容的显示 */

}

以上是一个自定义段并制定内存区域的完整例子。如果不需要这样的自定义,则可以不去管它,使用现有的,比如某个例子中可以使用的cmd文件就可以了。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

工业自动化、医疗电子及精密测试领域,微弱信号的精准采集与处理是系统性能的核心挑战。以24位Σ-Δ ADC为核心的高精度数据转换系统,结合激光修调电阻阵列的微弱信号调节器,通过动态元件匹配(DEM)技术与激光微纳加工工艺的...

关键字: ADC 动态元件匹配

2025年7月8日,致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于微芯科技(Microchip)dsPIC33CK256MP506主控MCU的3.3KW双向图腾柱PFC逆变电源方案...

关键字: 电源 MCU ADC

纳祥科技在原来的基础上更新了一款高性能音频I2S 114DB ADC,它能够以高达192kHz的采样率,执行立体声模拟到数字转换,最高支持24位串行值,并具备114dB动态范围,-100dB THD+N,功能可覆盖CS5...

关键字: 纳祥科技 ADC 国产芯片

最新 DSC 器件配备专用外设,适用于数据中心电源及其他复杂实时系统

关键字: PWM 分辨率 ADC 数字信号控制器

在电子系统设计中,模数转换器(ADC)的前端输入配置是至关重要的环节,它直接关系到信号采集的精度、稳定性和可靠性。ADC前端输入配置的选择不仅需要考虑信号的特性、系统的需求,还需要兼顾成本、功耗以及实现的复杂度。

关键字: ADC 电源

便携式血糖仪作为糖尿病管理的核心工具,其信号链性能直接影响检测精度与用户体验。随着超小型ADC(模数转换器)技术的突破,通过优化信号链设计可显著提升血糖仪的灵敏度、功耗与集成度。本文以凌力尔特(Linear Techno...

关键字: ADC 便携式血糖仪

在工业自动化领域,工业信号调节器作为核心硬件设备,承担着信号采集、转换、传输与隔离的关键任务。其硬件设计需兼顾信号精度、抗干扰能力、实时性与安全性,尤其需重点优化信号调理电路、模数/数模转换(ADC/DAC)模块以及隔离...

关键字: ADC DAC 隔离模块

上海2025年3月27日 /美通社/ -- 迈威生物(688062.SH),一家全产业链布局的创新型生物制药公司,与英矽智能,一家由生成式人工智能驱动的生物医药科技公司宣布达成战略合作,基于双方各自在 ADC 研发和人工...

关键字: ADC AI 人工智能 智能驱动

在现代工业与信息化社会,电源系统的稳定性和可靠性对于各种设备的正常运行至关重要。为了实现对电源系统的有效管理和维护,设计一个具有远程监控功能的电源系统显得尤为重要。本文将详细介绍一个通过网络(如Ethernet或Wi-F...

关键字: 电源系统 远程监控 ADC

在现实生活中,我们面对的信号大多为连续信号。然而,数字信号处理技术已取得了显著进展,因此,我们常常需要将连续信号转换为数字信号,以便在计算机或FPGA等设备上进行数字处理。ADC与DAC恰好扮演了这一角色,它们是模拟连续...

关键字: ADC DAC
关闭