误差的合成
扫描二维码
随时随地手机看文章
关于误差合成的理论和方法,在误差理论的教科书中有详尽的介绍,此处不必赘述。仪器精度分析中最常用的方法如下:
1。已定系统误差的合成
对于符号和大小均为己知的误差称已定系统误差。这类误差按代数和合成,即
式中,εj为各已知的原始误差所引起的仪器误差,它等于原始误差与传递系数的乘积。传递系数可由前面介绍的各种方法求出。
2。未定系统误差与随机误差的合成
式中,S1,S2,···,sP为A类(随机)不确定度分量;U1,U2,…,Ur为确定度分量,
式中,ej为误差界(-ej,ej);K为置信因子,可以根据分布特性确定。
式(4-17)中的R是误差之间的协方差之和。在多数情况下,可按所谓的“误差独立作用”原理,近似地令R=0。
3。仪器的总不确定度
式中,凡为置信因子,可以根据组成误差的数目和分布特性确定。
4,仪器总误差
由于仪器制造中多数随机误差与未定系统误差属于正态分布,再加上考虑误差独立作用原理,因此在实用中(尤其在初步计算时)常常采用式(4-21)的简化形式,即
式中,εi为各项未定系统误差与随机误差分量的极限值,t=1,2,3,…,n。
5.精度分析举例用光波扫描干涉法测量磁盘磁膜厚度的公式为
式中,va、vb为波数,它们分别与波长九、九相对应;刀为薄膜折射率;甲为入射角。