当前位置:首页 > 通信技术 > 通信技术
[导读]本文提出了一种调频收音机电台搜索的改进方案,克服了现有技术关于调频收音机搜索电台时容易产生误判现象的不足。该设计同时利用输入信号强度指示和频偏信息来判断电台。

摘 要 本文提出了一种调频收音机电台搜索的改进方案,克服了现有技术关于调频收音机搜索电台时容易产生误判现象的不足。该设计同时利用输入信号强度指示和频偏信息来判断电台。在实际测试显示,该方案能有效地提高调频收音机搜索电台的准确度。
关键词  调频收音机;电台搜索;频偏;输入信号强度指示
 

1  引言

    调频体制以其较强的抗干扰能力等特性在音频广播、电视、VHS HiFi、Laser Disc以及无线通信领域都得到了广泛应用。传统的超外差式调频信号接收机,信号解调需要采用高Q值的中频声表面波滤波器或晶体滤波器来实现。随着数字信号处理技术以及超大规模集成电路技术的飞速发展,传统的模拟设备逐渐被数字模拟混合设备所代替。文献[1]提出了使用可调电容和线性滤波器的数模混合电路来替代FM解调中使用的精确的外部器件和调整的方法,文献[2]中提出了一种利用信号带内具有理想线性特性的FIR滤波器进行调频信号鉴频的方法,但所需 FIR滤波器阶数达到数千阶,对系统工作时钟以及系统存储容量的要求都很高。文献[3]中提出了采用sinc3抽取滤波器和三点近似法微分器用于FM解调,大大降低了数字IC实现高性能FM调频接收机的复杂度。
    在用数字实现的FM调频接收机中,如何快速准确搜索到电台所在的频道是一个商用数字FM调频接收机必须解决的难题。
    现今调频收音机选择电台时常用的方法为:调频信号解调前都有限幅电路,该限幅电路的电流与输入信号强度的对数在相当大的范围内成正比。利用接收信号强度指示(RSSI)电路(该电路检测限幅电路的电流)可得出输入信号的强度,从而选择电台。此种方法的应用例如,在移动通信中的手持设备用接收信号强度指示表示接收信号的大小。
    在文献[3]提到的解调方案中,接收信号强度可以用数字下变频后信号能量(I2+Q2)来表征。
    虽然上述方法具有实现电路简单的优点,但却存在容易误判的缺陷。调频收音机信号带宽最大为180KHz左右,而搜台频率间隔分为50KHz、100KHz 和200KHz三种。当遇到一个强电台并且其信号带宽大,用频率间隔为50KHz和100KHz搜台时,上述方法在180KHz内指示的信号强度都大于设定门限(该门限一般为最弱电台信号强度),会误判为2-3个电台,严重影响搜台的准确性。同时在实际测试中发现,由于信号带宽的瞬时变化和信道干扰等影响,这种宽调频信号带宽带来的信号强度指示在相应带宽内全较强并不一定符合中心对称的原则,无法利用对称原则获取准确的电台频率。
    因此本文在此基础上提出了一种新型的设计方案,大幅度改进了调频收音机搜台的准确性,同时还保持了电路的简洁。

2  调频信号正交解调原理

    设调频信号表达式为:
                           (1)
    其中,a(t)表示受到信道噪声和其他干扰影响后随时间变化的调频信号幅度,m(t)为调制信号,ωc为信号载波。
    将式(1)所示的调频信号与本地产生的正交载波相乘可得:

    对sI(t)和sQ(t)分别进行FIR低通滤波[4],[3]后可得:
                                    (2)
                                    (3)
    对I(t)与Q(t)分别求导数[1]可得:
                         (4)                        (5)
    将式(2)与式(5)、式(3)与式(4)分别相乘再除以(2)、(3)的平方和可得m(t):
                                (6)

3  改进方案

    图1是改进后的调频收音机工作框图,在考量接收信号强度指示的同时,还同时参考接收信号的频偏来决定是否是准确的电台。


    此时如果接收到的调频信号载波与本地设定的解调正交波有一个频率差△w ,即不是准确的电台,则有:

                           (7)
    将(7)代入前述(2)~(6)的解码过程,可得:
                            (8)
    考虑到音频信号m(t)是交流信号,则解码输出的直流成分即为 。
这样,定义两个门限来衡量搜台结果。门限1:定义一个恰当门限为Ka(根据输入信号强度,对应RSSI的检测值)。
    门限2:定义一个恰当门限为Kb(根据频偏的大小,对应频偏的检测值)。
    定义两个步骤来检测搜台:
    步骤1:检测图1中的接收信号强度指示检测模块的输出(RSSI)>Ka;
    步骤2:检测频偏幅度检测模块输出(频偏幅度检测值)<Kb;
    当步骤1、2同时满足时,该信号即为正常台。

4  测试结果

    由于音频信号频率范围一般为300Hz~15KHz,FM最大频偏(已调载频信号的最大瞬时频率与载频之差)为±75KHz,标准单音调制度(调制度指调频信号的峰值频偏与系统最大频偏的百分比)为30%和100%,对应频偏为±22.5KHz和±75KHz。FM最大调制频偏一般有22.5KHz和 75KHz。
    考虑晶振的误差小于100PPM最大造成本振误差频偏为10KHz,则Kb参考设为10KHz。如果继续以50KHz频率间隔搜台,即本振以 50KHz步进来选择电台,在正常台两边搜索的本振频偏最少为40KHz,其检测值大于门限Kb,因而不会选择这个频率为正常台。由于本振频偏越大,直流检测值越大,所以不会把一个正常台误判为多个台。
    图2中展现了部分测试数据。其中Ka设定为21db,Kb参考设为10KHz。
 
(a) 101.5~102.2Mhz RSSI与频偏关系图
(b) 103.5~104.2Mhz RSSI与频偏关系图
(c) 105.5~106.2Mhz RSSI与频偏关系图
图2  FPGA测试结果 
    首先可以看到RSSI指示的实测值在有台处相对噪底有大于6db的信号增强,因此可以顺利的初步定位电台所在的频率。但同时可以在图2中看到在以确切频率为中心的100Khz范围内信号能量都比较强,而且不一定遵循对称原则如a、b。这主要是来源于测量瞬间干扰和调制信号的大小。因此简单的求取对称中心的方案并不合适。
    其次,图2中频偏的测量结果显示,在确切电台频率为中心的 100KHz内,如果信号的能量足够强,超过设定的门限21db,即调频信号没有淹没在噪底中(图2中(a),(c)),频偏检测能准确的发现 100KHz的频偏,从而检测出最确切的电台频率点。反之,如果信号能量能量不够强,没有超过设定的门限21db(见图2(b)),调频信号淹没在噪底中,由步骤1可以保证不会误判将不正确的频率判断为电台。
    综上在FPGA实现和ASIC芯片的测试中,证实了该改进方案能非常准确的测量出 100KHz的频偏,从而避免了在以50Khz、100Khz步长搜台时将一个信号强的电台误判为多个的现象,达到了提高了芯片的搜台准确性的效果。

5  结论

    针对现有技术关于调频收音机搜索电台容易产生误判现象的不足,本文提出了一种同时利用输入信号强度指示(RSSI)和频偏信息的调频收音机电台搜索的改进方案,克服了在以50Khz、100Khz步长搜台时将一个信号强的电台误判为多个的现象,提高了芯片的搜台性能。实际测试证明,该方案能有效的改进调频收音机搜索电台的准确度,提高调频接收芯片的搜台性能。
    本文提及的设计方案为鼎芯通讯(上海)有限公司FM radio项目中一部分,其中还包含了王险峰、黄一鸣、朱立振工作的支持,特此表示感谢。

参考文献

[1] Gregory J.Manlove,Jeffrey J. Marrah,Member,IEEE,and Richard A. Kennedy. A Fully Intergrated High-Performance FM Stereo Decoder. IEEE Journal Of Solid-State Circuits. VOL. 27,NO. 3,MARCH 1992
[2] 张泽,吴嗣亮.“列控系统多音调频信号的全数字解调方法[J].”军民两用技术与产品,2004,1
[3] Bang-Sup Song and In Seop Lee. “A Digital FM Demodulator for FM,TV,and Wireless” IEEE Transactions On Circuits and Systems-II:ANALOG AND DIGITAL SIGNAL PROCESSING,VOL.42,NO.12,DECEMBER 1995
[4] R.E.Crochiere and L.R.Rabiner. “Interpolation and decimation of digital signals-A tutorial review.”Proceedings of the IEEE,March,1981,69(3):300~331
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能

上海2024年5月13日 /美通社/ -- 5月8日,浦东新区国资委组织陆家嘴集团等9家区属企业与立邦中国召开合作交流会,旨在贯彻落实浦东新区区委、区政府工作要求,进一步放大进博会溢出带动效应,持续扩大区属企业与进博会重...

关键字: BSP 数字化 自动化立体仓库 智慧园区

上海2024年5月13日 /美通社/ -- 在数字化时代,高效的税务管理和ERP系统成为企业发展的关键。为了满足这一需求商应信息科技与Exact Software 易科软件就金四全电票税系统与ERP系统集成及商务合作建立...

关键字: AC 软件 BSP 数字化

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度
关闭
关闭