当前位置:首页 > 芯闻号 > 技术解析
[导读]对于电子电路设计,电子领域的朋友均有所了解。往期文章中,小编介绍过诸多电子电路设计理论,并带来了电子电路设计相关实例。本文对电子电路设计的讲解,主要在于介绍运算放大器的电子电路设计。如果你对本文即将讨论的内容存在一定兴趣,请继续往下阅读哦。

对于电子电路设计,电子领域的朋友均有所了解。往期文章中,小编介绍过诸多电子电路设计理论,并带来了电子电路设计相关实例。本文对电子电路设计的讲解,主要在于介绍运算放大器的电子电路设计。如果你对本文即将讨论的内容存在一定兴趣,请继续往下阅读哦。

运算放大器的偏置电路与分立放大电路的偏置电路设计有很大不同,主要由各种形式的恒流源电路实现,熟悉各种形式的恒流源电路是阅读运放电路的基础。运算放大器的输入级通常是差分放大电路,其主要功能是抑制共模干扰和温漂,双极型运放中差分管通常采用CC-CB复合管,以便拓展通频带;运算放大器的中间级采用共射或共源电路,并采用恒流源负载和复合管以增加电压放大倍数。双极型运算放大器的输出级采用互补输出形式,其主要功能是提高负载能力并增大输出电压和电流的动态范围。二只输出管轮流导通,每管工作在乙类状态。为消除交越失真,通常会给输出管提供适当的偏置电流,让其工作在甲乙类状态。

集成运算放大电路的一般组成及其单元结构,如恒流源电路、差分放大电路、CC-CE、CC-CB电路和互补输出电路等。运算放大器主要由输入级、中间放大级、输出级和偏置电路等四部分组成,如图1所示。

图1

由于集成电路工艺的限制,各级之间采用直接耦合。为保证输入短路时,输出直流电平为零,有时还需要在级间加入电平移动电路。运算放大电路的主要功能是进行线性放大。此外还有一些附加功能电路,如交流镜像电流源电路,输出保护电路,交越失真补偿电路,电平移动电路等,这些电路为保证放大功能提供辅助作用,通常并不影响放大电路指标计算。对辅助电路进行简化,可以方便交流分析。得到简化的交流等效电路后,将晶体管用小信号模型替代,就可以计算放大电路的动态指标。

图2是uA741运算放大电路的等效电路图,试分析其基本工作原理。

图2

运放电路的结构分解

输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)和T2、T4组成。中间放大级由T16、T17、T23组成共集—共射电路;输出级由T14、T20组成互补输出电路。

静态偏置分析

T10与T11构成微镜像电流源,一方面给T3、T4的基极提供偏置,另一方面由T8、R10构成的镜像电流源给T1、T2、T3、T4的集电极提供恒流偏置,同时作为T1、T2的恒流负载。

T13是多集电极管,它与T12构成镜像电流源。T13A一方面给T17提供偏置电流,同时作为T17的有源负载。T13B则是给T23提供偏置电流,同时作为T23的有源负载。

将电路中的镜像直流电流源用等效恒流源代替,得到等效直流通路如图3所示。

图3

交流分析

差分输入级中的T5、T6、T7管构成高精度交流镜像电流源,ic3=ic6,因而提供给T16的电流为Δi16B=Δic4-Δic6=Δic4-Δic3=2Δic4,使单端输出的差分电路达到双端输出的效果。T5、T7同时分别作为T3、T4的有源负载。电容C的作用是进行相位补偿,用于防止该运放可能产生的自激振荡。输出级中的T18,T19,R8给互补输出管T14,T20提供静态偏置,以消除交越越失真。R10、R11是输出限流保护用取样电阻,当输出电流过大时,T15或T20导通,通过T22、T24组成的镜像电流源,将该电流镜像至T23的另一个基极,通过负反馈抑制输出电流的增大。

将辅助电路简化后的等效交流通路如图4所示。

图4

其中,r02,r03是恒流源I2,I3的内阻。

例2,图5是CMOS运放C14573的等效电路图,试分析其基本工作原理。

图5

运放电路的结构分解

输入级是差动放大电路,主要由增强型MOS管T1、T2组成。输出级是一个简单的共源电路,由T8实现。

基准电流分析

T5和外接电阻R产生运放的基准电流IREF。

静态偏置分析

T6与T5构成镜像电流源,且T6作为T1、T2源极上的恒流源,并为它们提供直流偏置,T3、T4是T1、T2的恒流源负载。

T7与T5构成镜像电流源,且T7给T8漏极提供直流偏置,同时作为T8的恒流源负载。将镜像直流电流源用等效恒流源代替,得到等效直流通路如图6所示。

图6

交流分析

差分输入级中的T3,T4管构成交流镜像电流源,iD1=iD4,因而提供给T8的电流为Δi=ΔiD2-ΔiD4=ΔiD2-ΔiD3=2ΔiD2使单端输出的差分电路达到双端输出的效果。电容C的作用是相位补偿,用于防止自激振荡。将辅助电路简化后的等效交流通路如图7所示。

图7

其中,r1,r2是恒流源I1,I2的内阻。

以上便是此次小编带来的“电子电路设计”相关内容,通过本文,希望大家对上面提及的内容具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭