当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 摘要: 本文对多层感知器和反向传播进行入门级的介绍。 人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络。 人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络

摘要: 本文对多层感知器和反向传播进行入门级的介绍。 人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络。

人工神经网络是一种计算模型,启发自人类大脑处理信息的生物神经网络。人工神经网络在语音识别、计算机视觉和文本处理领域取得了一系列突破,让机器学习研究和产业感到了兴奋。在本篇博文中,我们将试图理解一种称为「多层感知器(MulTI Layer Perceptron)」的特定的人工神经网络。
 

单个神经元

神经网络中计算的基本单元是神经元,一般称作「节点」(node)或者「单元」(unit)。节点从其他节点接收输入,或者从外部源接收输入,然后计算输出。每个输入都辅有「权重」(weight,即 w),权重取决于其他输入的相对重要性。节点将函数 f(定义如下)应用到加权后的输入总和,如图 1 所示:

图 1:单个神经元

此网络接受 X1 和 X2 的数值输入,其权重分别为 w1 和 w2。另外,还有配有权重 b(称为「偏置(bias)」)的输入 1。我们之后会详细介绍「偏置」的作用。

神经元的输出 Y 如图 1 所示进行计算。函数 f 是非线性的,叫做激活函数。激活函数的作用是将非线性引入神经元的输出。因为大多数现实世界的数据都是非线性的,我们希望神经元能够学习非线性的函数表示,所以这种应用至关重要。

每个(非线性)激活函数都接收一个数字,并进行特定、固定的数学计算 [2]。在实践中,可能会碰到几种激活函数:

Sigmoid(S 型激活函数):输入一个实值,输出一个 0 至 1 间的值 σ(x) = 1 / (1 + exp(−x))

tanh(双曲正切函数):输入一个实值,输出一个 [-1,1] 间的值 tanh(x) = 2σ(2x) − 1

ReLU:ReLU 代表修正线性单元。输出一个实值,并设定 0 的阈值(函数会将负值变为零)f(x) = max(0, x)

下图 [2] 表示了上述的激活函数

图 2:不同的激活函数。

偏置的重要性:偏置的主要功能是为每一个节点提供可训练的常量值(在节点接收的正常输入以外)。神经元中偏置的作用,详见这个链接:

前馈神经网络

前馈神经网络是最先发明也是最简单的人工神经网络 [3]。它包含了安排在多个层中的多个神经元(节点)。相邻层的节点有连接或者边(edge)。所有的连接都配有权重。

图 3 是一个前馈神经网络的例子。

图 3: 一个前馈神经网络的例子

一个前馈神经网络可以包含三种节点:

1. 输入节点(Input Nodes):输入节点从外部世界提供信息,总称为「输入层」。在输入节点中,不进行任何的计算——仅向隐藏节点传递信息。

2. 隐藏节点(Hidden Nodes):隐藏节点和外部世界没有直接联系(由此得名)。这些节点进行计算,并将信息从输入节点传递到输出节点。隐藏节点总称为「隐藏层」。尽管一个前馈神经网络只有一个输入层和一个输出层,但网络里可以没有也可以有多个隐藏层。

3. 输出节点(Output Nodes):输出节点总称为「输出层」,负责计算,并从网络向外部世界传递信息。

在前馈网络中,信息只单向移动——从输入层开始前向移动,然后通过隐藏层(如果有的话),再到输出层。在网络中没有循环或回路 [3](前馈神经网络的这个属性和递归神经网络不同,后者的节点连接构成循环)。

下面是两个前馈神经网络的例子:
1. 单层感知器——这是最简单的前馈神经网络,不包含任何隐藏层。你可以在 [4] [5] [6] [7] 中了解更多关于单层感知器的知识。

2. 多层感知器——多层感知器有至少一个隐藏层。我们在下面会只讨论多层感知器,因为在现在的实际应用中,它们比单层感知器要更有用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭