当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 卷积神经网络(CNN)的基础介绍见 ,这里主要以代码实现为主。 CNN是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。 以MNIST作为数据库,仿照

卷积神经网络(CNN)的基础介绍见 ,这里主要以代码实现为主。

CNN是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

以MNIST作为数据库,仿照LeNet-5和TIny-cnn( ) 设计一个简单的7层CNN结构如下:
输入层Input:神经元数量32*32=1024;

C1层:卷积窗大小5*5,输出特征图数量6,卷积窗种类6,输出特征图大小28*28,可训练参数(权值+阈值(偏置))5*5*6+6=150+6,神经元数量28*28*6=4704;

S2层:卷积窗大小2*2,输出下采样图数量6,卷积窗种类6,输出下采样图大小14*14,可训练参数1*6+6=6+6,神经元数量14*14*6=1176;

C3层:卷积窗大小5*5,输出特征图数量16,卷积窗种类6*16=96,输出特征图大小10*10,可训练参数5*5*(6*16)+16=2400+16,神经元数量10*10*16=1600;

S4层:卷积窗大小2*2,输出下采样图数量16,卷积窗种类16,输出下采样图大小5*5,可训练参数1*16+16=16+16,神经元数量5*5*16=400;

C5层:卷积窗大小5*5,输出特征图数量120,卷积窗种类16*120=1920,输出特征图大小1*1,可训练参数5*5*(16*120)+120=48000+120,神经元数量1*1*120=120;

输出层Output:卷积窗大小1*1,输出特征图数量10,卷积窗种类120*10=1200,输出特征图大小1*1,可训练参数1*(120*10)+10=1200+10,神经元数量1*1*10=10。

下面对实现执行过程进行描述说明:

1. 从MNIST数据库中分别获取训练样本和测试样本数据:

(1)、原有MNIST库中图像大小为28*28,这里缩放为32*32,数据值范围为[-1,1],扩充值均取-1;总共60000个32*32训练样本,10000个32*32测试样本;

(2)、输出层有10个输出节点,在训练阶段,对应位置的节点值设为0.8,其它节点设为-0.8.

2. 初始化权值和阈值(偏置):权值就是卷积图像,每一个特征图上的神经元共享相同的权值和阈值,特征图的数量等于阈值的个数

(1)、权值采用uniform rand的方法初始化;

(2)、阈值均初始化为0.

3. 前向传播:根据权值和阈值,主要计算每层神经元的值

(1)、输入层:每次输入一个32*32数据。

(2)、C1层:分别用每一个5*5的卷积图像去乘以32*32的图像,获得一个28*28的图像,即对应位置相加再求和,stride长度为1;一共6个5*5的卷积图像,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

(3)、S2层:对C1中6个28*28的特征图生成6个14*14的下采样图,相邻四个神经元分别进行相加求和,然后乘以一个权值,再求均值即除以4,然后再加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

(4)、C3层:由S2中的6个14*14下采样图生成16个10*10特征图,对于生成的每一个10*10的特征图,是由6个5*5的卷积图像去乘以6个14*14的下采样图,然后对应位置相加求和,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

(5)、S4层:由C3中16个10*10的特征图生成16个5*5下采样图,相邻四个神经元分别进行相加求和,然后乘以一个权值,再求均值即除以4,然后再加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

(6)、C5层:由S4中16个5*5下采样图生成120个1*1特征图,对于生成的每一个1*1的特征图,是由16个5*5的卷积图像去乘以16个5*5的下采用图,然后相加求和,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

(7)、输出层:即全连接层,输出层中的每一个神经元均是由C5层中的120个神经元乘以相对应的权值,然后相加求和;然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。

4. 反向传播:主要计算每层神经元、权值和阈值的误差,以用来更新权值和阈值

(1)、输出层:计算输出层神经元误差;通过mse损失函数的导数函数和tanh激活函数的导数函数来计算输出层神经元误差。

(2)、C5层:计算C5层神经元误差、输出层权值误差、输出层阈值误差;通过输出层神经元误差乘以输出层权值,求和,结果再乘以C5层神经元的tanh激活函数的导数,获得C5层每一个神经元误差;通过输出层神经元误差乘以C5层神经元获得输出层权值误差;输出层误差即为输出层阈值误差。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

演化脉络 下图所示CNN结构演化的历史,起点是神经认知机模型,已经出现了卷积结构,但是第一个CNN模型诞生于1989年,1998年诞生了LeNet。随着ReLU和dropout的提出,以

关键字: cnn

自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-cra

关键字: cnn 计算机视觉

CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型。图1展示了在NLP任务中使用CNN模型的典型网络结构。一般而言,输入的字或者词用Word Embedding的方式表达,这样

关键字: cnn nlp

严格来说不是在讲Python而是讲在Python下使用OpenCV。本篇将介绍和深度学习数据处理阶段最相关的基础使用,并完成4个有趣实用的小例子: - 延时摄影小程序 - 视频中截屏

关键字: cnn

训练专项网络 还记得我们在开始时丢弃的70%的培训数据吗?结果表明,如果我们想在Kaggle排行榜上获得一个有竞争力的得分,这是一个很糟糕的主意。在70%的数据和挑战的测试集中,我们的模

关键字: cnn 网络技术

上一次我们用了单隐层的神经网络,效果还可以改善,这一次就使用CNN。 卷积神经网络 上图演示了卷积操作 LeNet-5式的卷积神经网络,是计算机视觉领域近期取得

关键字: cnn

Pybrain号称最好用的Python神经网络库。其实Scikit-Learn号称Python上最好用的机器学习库,但是它偏偏就没有神经网络这块,所以就与我无缘了。 之前也看过一些提到N

关键字: cnn 深度学习

摘要:本文展示了如何基于nolearn使用一些卷积层和池化层来建立一个简单的ConvNet体系结构,以及如何使用ConvNet去训练一个特征提取器,然后在使用如SVM、LogisTIc回归等不同

关键字: cnn python

一、多层前向神经网络 多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成; 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输

关键字: cnn python

无人驾驶的感知部分作为计算机视觉的领域范围,也不可避免地成为CNN发挥作用的舞台。本文是无人驾驶技术系列的第八篇,深入介绍CNN(卷积神经网络)在无人驾驶3D感知与物体检测中的应用。 C

关键字: cnn FPGA
关闭
关闭