当前位置:首页 > > 充电吧
[导读]先盗一图,摘自ImageNet Classification with Deep Convolutional Neural Networks(Hinton) 由作者的原文可知,AlexNet模型在训

先盗一图,摘自ImageNet Classification with Deep Convolutional Neural Networks(Hinton)


由作者的原文可知,AlexNet模型在训练时使用了两个GPU,所以就出现了一些参数为两个GPU共享,一些参数是GPU独享。在建立此训练模型前,先分析各层的参数关系。

AlexNet模型共有5个卷积层,3个全连接层,前两个卷积层和第五个卷积层有pool池化层,其他两个卷积层没有池化。

第一卷积层:

由AlexNet架构图,第一卷积层的卷积核有96个(两个GPU各用48个),卷积核的尺度为11*11*3(3为RGB通道数),步长stride为4。生成的卷积特征图单元数为55*55*48*2,每个特征图尺度为55*55,由此可知输入图像尺度为227*227(55(单向尺度)*4(步长) + (11(卷积核尺度)-4(步长)) = 227)。因此输入图像单元数为227*227*3*1。

第一池化层:

输入单个特征图尺度为55*55,池化尺度3*3,步长为2,输出池化特征图尺度为27*27((55(单向尺度)-3(池化尺度))/2(步长)+1 = 27)。特征图单元数为27*27*48*2.

第二卷积层:

由AlexNet架构图,卷积核有256个(两个GPU各128个,同时各作用于各GPU内的第一池化层的输出),卷积核尺度5*5*3,步长为1,生成卷积特征图单元数为27*27*128*2,每个特征图尺度为27*27,由此计算输入特征图尺度为31*31(27(单向尺度)*1(步长)+(5(卷积核尺度)-1(步长))= 31)。因此输入特征图单元数为31*31*96。

第二池化层:

输入单个特征图尺度为27*27,池化尺度3*3,步长为2,输出池化特征图尺度为13*13((27(单向尺度)-3(池化尺度))/2(步长)+ 1 = 13)。特征图单元数为13*13*128*2.

第三卷积层:

由AlexNet架构图,卷积核有384个(两个GPU各192个,同时需要共享各自GPU第二池化层的输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*256。

第四卷积层:

由AlexNet架构图,卷积核有384个(两个GPU各192个,同时不共享各自GPU内的第三卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*192*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。

第五卷积层:

由AlexNet架构图,卷积核有256个(两个GPU各128个,同时不共享各自GPU内的第四卷积层输出),卷积核尺度为3*3*3,步长为1,生成卷积特征图单元数为13*13*128*2,每个特征图尺度为13*13,由此计算输入特征图尺度为15*15(13(单向尺度)*1(步长)+(3(卷积核尺度)-1(步长))=15)。因此输入特征图单元数为15*15*384。

第五池化层:

输入单个特征图尺度13*13,池化尺度3*3,步长为2,输出池化特征图尺度为6*6((13(单向尺度)-3(池化尺度))/2(步长)+1 = 6)。特征图单元数为6*6*256.

第一全连接层:

输入特征图单元数为6*6*256,输出特征图单元数为4096,全连接参数个数为6*6*256*4096.

第二全连接层:

输入特征图单元数4096,输出特征图单元数为4096,全连接参数个数为4096*4096.

第三全连接层:

即输出层,输入特征图单元数为4096,输出特征图单元数为1000,全连接参数个数为4096*1000.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭