当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 当你向Facebook上传了一张你朋友的照片后,这张照片就进入了一个复杂的幕后处理过程。算法迅速行动并分析照片的每一个像素,直到将朋友的名字和这张照片匹配起来。这类型的前沿技术也被用在了自动驾驶

当你向Facebook上传了一张你朋友的照片后,这张照片就进入了一个复杂的幕后处理过程。算法迅速行动并分析照片的每一个像素,直到将朋友的名字和这张照片匹配起来。这类型的前沿技术也被用在了自动驾驶汽车上,使得自动驾驶汽车能够从背景中区分行人和其它车辆。

这项技术也可以用来区分μ介子和电子吗?很多物理学家相信这一点。在该领域的研究人员正着手运用它来分析粒子物理数据。

支持者们希望利用深度学习节省实验时间、金钱和人力,让物理学家们做其它不太繁琐的工作。另一些人希望能提高实验的结果,相比以前使用的任何算法,这个算法能使他们更好地识别粒子和分析数据。尽管物理学家们不认为深度学习是万能的,但一些人认为它可能在应对即将到来的数据处理危机中起到关键作用。

神经网络

直至今日,计算机科学家们仍经常人工编写算法,一个任务往往需要无数个小时的复杂计算机语言工作。“我们仍然做着不错的科学工作,”费米国立加速器实验室的科学家Gabe Perdue说,“但是我认为科学工作还可以做得更好。”

而如果要使用深度学习,我们则需要一种不同的人类输入。

一种实现深度学习的方法是使用卷积神经网络(CNN)。CNN是模拟人类视觉感知建模的。人类用自身的神经元网络处理图像;CNN通过输入层节点(node)来处理图像。人们通过向网络送入预处理的图像来训练CNN。通过学习这些输入,算法会不断调整各节点的权重并因此学会识别模式和相关点。由于算法不断修正这些权重,预测结果会变得越来越准确,甚至超越人类。

卷积神经网络以通过将多个权重绑在一起的方式来缩短分解数据处理的步骤,这意味着必须调整的算法元素更少。

CNN出现于90年代末。但是近年来随着许多方面的突破(如处理图形的硬件价格降低、训练数据集不断扩增以及CNN架构本身的创新),越来越多的研究人员开始使用它们。

CNN的发展导致语音识别、翻译以及其它传统上由人类完成的任务的进步。一家Alphabet(谷歌母公司)旗下位于伦敦的公司DeepMind使用CNN创建了AlphaGo,这个计算机程序在3月份打败了世界排名第二的围棋选手,围棋是比国际象棋更复杂的策略棋盘游戏。

CNN使得我们可以更从容地处理大量的基于图像的数据,而之前我们对这些数据束手无策——高能物理学中经常会碰到这种图像数据。

进入物理学领域

随着大数据和具有处理大量信息所必需的计算能力的图形处理单元(GPU)的出现,CNN在2006年开始得到大规模运用。Perdue说:“从那之后,精确度有了很大的提高,人们也还一直在继续高速地创新。”

大约一年前,各类高能物理实验的研究人员开始考虑将CNN引入他们的实验的可能性。“我们把物理问题变成了:‘我们能否分辨一辆自行车和汽车?’”SLAC国家加速器实验室研究员Michael Kagan说,“我们只想弄清楚如何以正确的方式重组问题。”

在大多数情况下,CNN将用于粒子识别和分类以及粒子轨迹重建。一些实验已经使用CNN来分析粒子的相互作用,其准确性很高。例如,NOvA中微子实验的研究人员已经将CNN应用到了其数据上。

“CNN 本来是用于识别动物和人的图片,但它也能很好的用于物理领域的识别,”费米实验室科学家Alex Himmel 说,“预测结果非常好——相当于我们的检测器多产生了30% 的数据。”

从事大型强子对撞机(LHC/Large Hadron Collider)实验的科学家们希望借助深度学习来使他们的实验更自动化,CERN 物理学家Maurizio Pierini 说:“我们正试图在一些任务上取代人。用人来看管比用计算机看管要昂贵得多。”

在检测器物理学以外,CNN 也被证明是有用的。在天体物理学方面,一些科学家正在开发可以发现新的引力透镜的CNN;引力透镜是指可以扭曲来自它们后面的遥远星系的光的大型天体(如星系团(galaxy clusters))。对望远镜数据扫描以寻找引力透镜扭曲现象的过程是非常耗时的,并且普通的模式识别程序难以区分它们的特征。

“公平地说,在使用这些工具时,我们仅仅涉及了很浅的部分,”在费米实验室的NOvA 实验项目工作的威廉玛丽学院博士后研究员Alex Radovic 说。

未来的数据盛宴

一些科学家认为神经网络可以帮助应对他们预见的即将到来的数据处理危机。

计划于2025年推出的升级版大型强子对撞机将产生大约10倍的数据。暗能量光谱仪(Dark Energy Spectroscopic Instrument)将收集大约3500万个宇宙物体的数据,大型综合巡天望远镜(Large SynopTIc Survey Telescope)将捕获近400亿个星系的高分辨率视频。

数据量一定会飞速增长,但从前计算机芯片处理能力的指数级增长预计将会陷入停顿。这意味着处理更大量的数据将越来越昂贵。

“对于10倍的碰撞次数,你可能需要超过100倍的处理能力,”Pierini 说。“用传统的做事方式,我们会走入死胡同。”

然而,并不是所有的实验都适用于该技术。

“我认为有时这会是正确的工具,但它不会一直是正确的,”Himmel 说,“数据与自然图像越不相似,神经网络的有用性越低。”

大多数物理学家都同意,CNN 不适合刚刚启动的实验中的数据分析,因为神经网络对于计算过程不是很透明。“这会很难说服人们相信他们已经发现了新的东西,”Pierini 说,“我认为用纸和笔做事情仍然是有价值的。”

在某些情况下,运用CNN 的挑战将超过获益。例如,如果数据尚未转换为图像格式,则需要将其转换为图像格式。并且神经网络需要大量的数据用于训练——有时不得不模拟数百万的图像。即使这样,模拟也不如真实数据那么好。因此,神经网络必须用实际数据和其它交叉检查进行测试。

“一个高标准的物理学家能够接受任何新事物,”德克萨斯大学阿灵顿分校的物理学副教授Amir Farbin 说,“需要跨越很多障碍去说服大家这是对的。”

展望未来

对于那些相信CNN 结果的人,CNN 意味着更快的物理学和值得期待的未知。

一些人希望用神经网络来检测数据中的异常,这可以指示检测器中的缺陷或者为新发现指引线索。为了寻找新发现,研究人员可以只是让 CNN 遍历数据并试图找到突出点,而不是一定要找到具有特定标志的新事物。“不必指定要搜索的新物理的领域,”Pierini 说,“这里获取数据的方式更开放。”

日后,研究人员甚至可能开始采用无监督学习来处理物理数据。无监督学习,顾名思义,是指可以无需人工指导就训练大量数据的算法。科学家可以传输给该算法相应的数据,然后该算法就能从中得出结论。

“如果你足够聪明,你可以使用它来做所有类型的事情,”Perdue 说,“如果它能够推断新的自然规律或类似定律,这将是惊人的。”

“但是,”他补充道,“那样的话,我也要去寻找新的工作了。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭