当前位置:首页 > 电源 > 电源DC/DC
[导读]优化电子产品微处理器电源管理对延长电池使用时间十分重要,MAX1586A、MAX1586B和MAX1587A系列电源管理器件针对X-Scale微处理器进行了优化,利用简单的外围线路就可调高CPU内核电压以达到CPU对于输出电压的要求,适合更高工作频率的CPU。本文对CPU内核电压转变时间控制、调高输出电压的方式以及改变后CPU内核电压转变时间的变化进行了详细推导。

优化电子产品微处理器电源管理对延长电池使用时间十分重要,MAX1586A、MAX1586B和MAX1587A系列电源管理器件针对X-Scale微处理器进行了优化,利用简单的外围线路就可调高CPU内核电压以达到CPU对于输出电压的要求,适合更高工作频率的CPU。本文对CPU内核电压转变时间控制、调高输出电压的方式以及改变后CPU内核电压转变时间的变化进行了详细推导。

图1:MAX1586电源管理控制器。(点击看大图)

随着PDA/智能电话体积的缩小和更长电池使用时间的要求,电源管理成为达到这些设计目标的关键因素。电源管理控制器包含多组直流电源转换器、稳压器、电压检测器及控制接口,使用集成电源管理控制器可以节省控制器本身、外围元件占用的空间和成本,提高电源转换效率并适时地关闭或调整输出电压,进而达到更长的电池使用时间。利用集成电源控制器还可以简化设计,降低研发风险、缩短产品的上市时间。

集成电源管理控制器

美信集成产品公司推出一系列小型电源管理IC-MAX1586A、MAX1586B和MAX1587A,该系列器件适用于采用X-Scale微处理器的产品。 其中MAX1586和MAX1587提供1MHz同步整流的高性能降压转换,因而不必使用外接二极管,可降低成本并减小产品尺寸。该系列IC可提供对7种高性能低电流电源的监控和管理功能,其DC-DC I/O电源可预置为3.3V或3V,也可调整为其它值,电流能高达1.3A。

MAX1586A和MAX1587A对DRAM电源可预置为1.8V或2.5V,MAX1586B DRAM电源可预置为3.3V或2.5V,电流达900mA,器件的DRAM电压也能通过外部电阻进行调整。该电源管理IC对CPU供电可实现连续可编程的动态电压管理,电流可达500mA。此外,线性调整的输出能够管理SRAM、PLL及USIM供电。

图1所示为MAX1586集成电源管理控制器,该控制器包含了三组直流电源转换器(PWM REG1、2、3)、三组稳压器(LDO REG4、5、6)、两组电压检测器、串行端口控制接口。图1中第一组转换器(PWM REG1)主要用于外围接口供电,预设输出电压3.3V、3.0V或由分压电阻调节,最大输出电流1.3A,可供给内部处理器、控制器外围接口或是CF适配卡、SD适配卡等外围电路;第二组转换器(PWM REG2)主要用于内存供电,预设输出电压2.5V、1.8V或由分压电阻调节,最大输出电流0.9A。这两组转换器内部各有一个并联的稳压器,当输出负载很小时,可以关闭DC-DC转换器,改由稳压器输出,以减少控制器的工作电流,进而提高转换效率。

新一代中央处理器为求更省电,内核电源采用动态电压调整,MAX1586第三组电源转换器(PWM REG3)用来供给CPU内核电源,其输出电压可通过串口控制,输出范围可由0.7V调至1.475V,当CPU工作在不同模式时,所需内核电压也不同,例如在全速运行时需要1.3V,当进入省电模式时工作频率下降,可能只需要1.0V的供电电压,通过动态调整CPU的运行速度及内核电压,进而达到更省电的要求。每次调整输出电压时,输出电压转变时间由RAMP引脚外接电容决定,选择适当的电容器以符合CPU对于内核电压动态转换的要求。

内核电压转变时间的设定图2. 1.3V至1.0V输出电压转变时间。

当由串口控制调整输出电压时,内部DAC输出电压也随之改变,DAC输出通过100KΩ连接至RAMP引脚,而RAMP引脚外接一个电容,在MAX1586设计中第三组直流电源转换器(PWM REG3)输出电压反馈点FB3的电压VFB3和RAMP引脚电压VRAMP成正比,可得下式:

VFB3=A×VRAMP,其中A=1.28。

因DAC输出电压改变,RAMP引脚电压VRAMP按照电阻、电容决定的充放电时间而变化:

Eq1

其中CRAMP为RAMP引脚外接电容的容量,ΔV为电压变化量。以1.3V切换至1.0V,CRAMP=330pF、1500pF、3300pF为例,可以得到图2所示结果。

利用一个简单的近似方法可以快速得到转变时间:2.2倍时间常数约等于输出电压从10%变化至90%所需时间,以CRAMP=1500pF为例,时间常数τ=100KΩ×CRAMP=150μs。因而得到输出电压转变所需时间约为330us,如输出电压从1.0V变化至1.3V,也就是输出电压变化斜率为1mV/us。

调高中央处理器核电压

当CPU工作频率愈高,所需核心电压也愈高,当所需最高电压高于原来的最大值1.475V时,简单地修改外围电路就可将输出电压调至所需电压。下面给出了调高比例及调高电压两种调整方式:

1. 调高比例

图3(a)、(b)为两种调高比例方式,分别在反馈点或RAMP引脚加入输出反馈电压,以达到调高电压的目的。在图3(a)中,使用两个分压电阻在输出端及反馈点FB3,可按照固定比例调高电压,输出电压V3和分压电阻R24、R 25及RAMP引脚电压VRAMP对应关系式如下:

Eq2

以R24=3.32KΩ,R 25=100 KΩ,R FB3=185.5KΩ为例,

Eq3

最高电压由1.475V变为1.55V,原本25mV的级差变为26mV,而输出电压转变时间维持不变。图3:a. 比例调整方法一。 b. 比例调整方法二。

在图3(b)中,使用电阻R1连接RAMP引脚及输出V3,可按照固定比例调高电压。

Eq4,

其中VDAC为内部DAC输出电压。

以原本最高1.475V为例,

Eq5

Eq6

若希望调高后电压为1.55V,则VRAMP必须为:

EQ7

可得R1=575 KΩ。

由于电阻R1的关系,RAMP引脚电压VRAMP的时间常数也随之改变:

在RAMP引脚可以得到

Eq8

代入

Eq9

整理后可以得到:

Eq10

可以得到VRAMP(t)微分方程式:

Eq11

而VRAMP(0)、VDAC(0)、VRAMP(∝)为己知值,可以得到:

Eq12,其中

Eq13

假设电压从1.3V变至1.0V,

Eq14,Eq15

Eq16,Eq17

新的时间常数为:τ=157μs,而原时间常数=R2×CRAMP=150μs,只有7μs的变化,输出电压转变时间常数改变很小。

2. 电压调整法

图4中,用电阻R1连接VRAMP与1.25V参考电压VREF,两个分压电阻R3、R4连接在输出端和反馈点FB3,可以调高输出电压,V3=1.28V RAMP+ΔV,ΔV为固定电压,分析如下:

Eq18,而Eq19,可得图4:电压调整方法。

Eq20

可以设定Eq21及Eq22

因而得到Eq23

简化Eq24及Eq25可以得到:

Eq26及Eq27

代入A=1.28,VREF=1.25V,ΔV =75mV及R2

得到R1=2.133MΩ。

假设Eq28,其中Eq29

可得:

Eq30

Eq31

假设Eq32,Eq33,Eq34,EQ35,可以得到固定Eq36的电压变化。

本文小结

MAX1586电源控制器能够提供PDA或智能电话所需的大部份电源管理控制,本文对CPU内核电压转变时间控制、调高输出电压的方式以及改变后CPU内核电压转变时间的变化作了详细推导,利用简单的外围线路就可调高CPU内核电压以达到CPU对于输出电压的要求,适合更高工作频率的CPU,使得MAX1586在PDA或智能电话的应用上更有弹性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

日本福岛地震11年之后,核电站的污水处理依然是个难题,此前日本做出了将核污水排入大海的决定,但遭到了当地渔民及周边国家的反对,为了消除大家对核污水的安全性担心,日本已经开始试验用核处理水养鱼。据日本媒体报道,福岛核电站的...

关键字: 放射性 核电 电力 电站

北京2022年10月17日 /美通社/ -- 10月13日,同方股份有限公司与中国核工业二四建设有限公司举行战略合作签约仪式。双方将发挥各自优势,在高效能源利用、智慧工地建造、数字化转型智慧中枢等领域加深密切联系,展开多...

关键字: 核电 数字化 大数据 智慧工地

为增进大家对电池的认识,本文将对电池的几个性能参数予以介绍。

关键字: 电池 指数 电压

摘 要 : 目前 , 10 kV母线三相电压不平衡时有发生 ,表现为一相或两相对地电压升高 ,其余相降低。不平衡的电压影响调度员对于 线路是否接地的判断 ,亦有可能造成线路、主变保护电压闭锁功能的失效 ,严重时甚至会...

关键字: 母线 电压 三相不平衡

(全球TMT2022年6月28日讯)浪潮存储基于大量的NAND测试数据,在反复探索和实践推理过程中发现了企业级固体硬盘普遍面临三个挑战: 首先,NAND特性会影响数据的可靠性。例如NAND中未写满数据的块因数据保...

关键字: NAND 闪存盘 电压 Flash

在这篇文章中,小编将为大家带来微控制器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 微控制器 微处理器 CPU

2022年6月17日,爱普特微电子受邀参加由Aspencore主办的全球MCU生态发展大会。此次会议以“国产创新 智能应用”为主题,汇聚了MCU 业内知名技术、应用专家和 MCU 产业链上下游企业,共同探讨最新MCU技术...

关键字: 爱普特微电子 MCU 微处理器

为增进大家对电力系统的认识,本文将对电力系统中性点接地方式,以及电力系统调压手段予以介绍。

关键字: 电力系统 指数 电压

儒卓力(Rutronik Elektronische Bauelemente GmbH)推出RECOM公司E-K 系列中具有高功率密度的 20 W AC/DC 转换器RAC20E-K/277,它的特点是具有OVC III...

关键字: 儒卓力 转换器 电压

电源

8389 篇文章

关注

发布文章

编辑精选

技术子站

关闭