扫描二维码
随时随地手机看文章
ADNS2610的主要特征如下:
(1)精确的光学导航技术;
(2)小巧紧凑的结构(10 mm×12.5 mm的引脚);
(3)二维运动量的检测;
(4)简单通用的控制器接口;
(5)高达12 inch/s的运动检测;
(6)400 cpi的解析度;
(7)高可靠性;
(8)高速运动传感器;
(9)串口寄存器。
2.2 电路设计
图2是该系统的硬件电路结构框图。微型飞机的飞行控制系统的主控芯片为MSP430F449。
整个系统的硬件电路如图3所示。其中SDIO是串口数据输入/输出端口;SCK是串口的时钟端口。时钟信号由主控制器MSP430F449发出。当向SDIO端口写入读/写地址以后,数据就通过这个端口写入或读出。ADNS-2610的输出电压为5 V,而MSP430的I/O端口输入高电平最高为3.6V,因此要对ADNS-2610的SDIO输出电平降压,使之符合MSP430对输入电平的要求。如图3所示,通过外接分压电阻的方式降低ADNS-2610
的SDIO端口的电压。ADNS-2610的SCK端口只接收时钟信号。ADNS-2610接收的高电平信号电压范围是2~5 V,而MSP430输出的高电平信号为3V,符合ADNS对高电平的要求,因此不用考虑电平的调整。[!--empirenews.page--]
3 透镜系统设计
透镜焦距的选择对于整个系统的设计至关重要,因为它决定了微型飞机在使用本测速系统时的高度范围。微型飞机使用光流法测速的场合主要是在近地飞行过程中,因此选用的透镜系统的物距应该适合近地飞行时使用。为了节约成本,选用了电脑上常用的一种摄像头上的透镜系统,其焦距为4mm,其物距范围为几厘米到几米,完全能满足要求。该系统透镜与ADNS2610的感光面的距离是可以连续调节的,这样就可以方便地调节成像的清晰度。
在实际使用过程中,透镜与感光面的距离一旦确定就不再改变。这样虽然随着飞机高度的变化,成像清晰度可能会有所改变,但是只要在限定的高度范围内,成像的清晰度是能够保证的,因此不影响测速,并且还能够简化计算过程。
因为图像的最大移动速度为12inch/s以及透镜焦距为4mm,可以推导出测速时微型飞机的最大相对于地面飞行角速度为76.2 rad/s。
4 软件设计
测速软件包括主控芯片的初始化、位移量的读取、速度的计算这几个模块。系统的初始化主要针对控制芯片MSP430F449的相应控制引脚而言,包括设置I/O端口、输出频率、存储区间等。根据ADNS2610的数据手册,在读数据的过程中,在发送完最后一个地址位后,微控制器的SDIO端口必须进入高阻态。这里把MSP430的相应引脚设置为输入状态,可以满足对微控制器的高阻态要求。程序软件设计的总流程图如图4
所示。
读数据的过程由微控制器来驱动,时序如图5所示。
每条读数据命令包含2个字节,第1个字节代表地址,最高位为O。在数据传输过程中,SDl0的数据在时钟下降沿被设置,在时钟上升沿被接收。在向ADNS2610传输数据的过程中,时钟脉冲和数据的变化之间有一定的时序关系,如图6所示。在地址位传输结束后,微控制器的SDIO端口必须被设置为高阻态,并且串口的时钟必须要有不小于100μs的延迟,如图7所示(图5中的detail“A”)。最后一个数据位传输结束以后,ADNS2610会进入高阻态,这时SCK和SDIO之间的时序关系如图8所示(图5中的detail“B”)。根据时序要求可以看出,如果以读取X和Y方向上移动量各1次为1个周期T,那么周期T大于200μs。
向ADNS2610写数据的时序图如图9所示,也是先传送地址位再传送数据位。其中地址位的最高位为1。SCK和SDIO的信号脉冲时序要求如图6所示。需要注意的是,写数据结束以后,必须延时100μs以上才能够进行下一次读或者写操作。
以X轴为例给出速度的计算过程。传感器的分辨率为400 cpi,所以Delta_X的单位为O.0025inch。如果周期T的单位为s,则:
Y轴的速度计算过程和X轴相同。
图像的解析度是400 counts/inch,图像的最大移动速度是12inch/s,因此最大的计数速度是4800counts/s。Delta_X和Delta_y的绝对值最大为127,因此最大的读数周期为0.0265s。[!--empirenews.page--]
5 调试
调试主要包括硬件调试、软件调试、透镜系统调试3个部分。硬件调试主要考虑硬件之间的连接。为了降低信号线的电感特性,缩短阶跃响应时间,引线SCK和SDIO要尽可能短,并且中间连接的电阻尽量考虑使用贴片电阻。另外MSP430和ADNS要共地,这样它们的高低电平之间才有共同的基准。软件调试分为3个步骤:时序验证、图像读取、读取周期验证。
时序验证是通过示波器来验证SCK信号和SDIO信号的时序,以及地址和数据是否正确。可以通过实现点亮LED灯等功能来验证发送和接收软件的正确性。实验结果证明向ADNS写数据的程序是符合要求的。接下来的调试步骤就是读取图像,以验证读数据程序的正确性,并为调焦做准备。为了方便调试,直接采用光电鼠标的透镜系统和支撑结构。图10是读取到的图像和原始图像的对比,其中图10(a)是利用传感器拍摄的图像,图10(b)是对原始图像扫描后的结果,扫描分辨率是2 400 dpi。使用的透镜像距和物距之比是1:1,因此拍摄的图像和原图的大小也是1:1。传感器的分辨率是400 cpi,图像分辨率是18×18像素,因此图像的大小是(18/400)inch×(18/400)inch,即1.143 mm×1.1 43 mm。
传感器图像的灰度等级成64个等级,0是全黑,63是全白。传感器内置了自动增益电路调整快门值。使得最亮的部分的灰度值在55左右。软件调试的第三步是验证实际读取周期。读取Delta_X和Delta_Y各1次为1个周期,通过示波器来读取这个周期值。
透镜系统的调试主要是调整透镜的中心和传感器感光面之间的距离,以达到系统在几厘米到几米的高度上成像清晰。图11显示了透镜系统调试完成后拍摄的图片和拍摄用的原图,其中图11(a)像距未调好时拍摄的图片,图11(b)是像距调整后传感器拍摄的图片,图11(c)是拍摄用的原图的扫描件,原图在扫描时配上标尺以表明原图的尺寸。
根据地面上实际图形的大小和镜头与地丽的距离,可以计算出传感器感光面与透镜中心的距离,根据此距离,就可以计算出a,再根据前面的公式可以计算出微型机的飞行速度。
6 结语
本文所设计的检测系统,采用集成式传感器芯片,降低了微型飞机检测系统的设计成本,减轻微型机飞行重量。调试结果表明,该检测系统在微型机近地飞行时,能够实现对微型飞机的水平飞行速度测量,从而可提高微型机的飞行稳定性,并为微型飞机实现自主控制打下基础。当然该系统的使用也有一定的限制条件。它的数据读取周期大于200μs,因此实时性较差。另外它的使用高度也是一个限制,当微型机的飞行高度越高时,系统的分辨率也就会相应降低。因此只能作为其他测速方式的一种补充,主要是在微型飞机近地飞行和降落时发挥最大作用。
波音公司2022年第三季度共交付112架商用飞机,其中88架737,9架787。今年年初至今,波音公司已交付328架飞机,包括277架737,其中267架737 MAX。(美通社头条)...
关键字: 飞机