当前位置:首页 > 电源 > 数字电源
[导读]很少有人知道当手臂拿起一个球时神经、臂膀和传感系统之间的交互。为了模拟这一自然反应过程,可以通过微处理器、嵌入式控制软件、执行机构和传感器来构造这一系统从而来研究它们之间的复杂关系。这也是美国国防高级

很少有人知道当手臂拿起一个球时神经、臂膀和传感系统之间的交互。为了模拟这一自然反应过程,可以通过微处理器、嵌入式控制软件、执行机构和传感器来构造这一系统从而来研究它们之间的复杂关系。这也是美国国防高级研究计划署(DARPA)革命性假肢计划所面临的挑战。

美国约翰霍普金斯大学应用物理实验室是领导性的全球团队,包括政府机构、大学、私有企业,他们的任务是开发世界上最先进的假肢,此假肢由神经输入控制,使佩戴者感觉是一个真的手臂一样能够以一定的速度、灵敏度和力去运动。先进的传感反馈技术能够感知物理输入,如压力、力和温度。

这个项目中具有里程碑意义的关键部分是虚拟综合环境的开发,一个完整的手臂系统的仿真环境使用The Mathworks工具和基于模型设计。虚拟综合环境具有标准化的架构和定义完善的界面,能够使二十多不同领域专家很好地合作。

The Mathworks工具基于模型设计也被用在其他开发阶段,包括对臂的机械系统进行建模、测试新的神经解码算法和开发与验证控制算法。

为 DARPA计划开发的两个原型手臂使用了目标肌肉神经系统,这项技术是由芝加哥康复研究院Todd Kuiken博士研发的,内容包括从被切除手臂到未使用的伤害处的肌肉区域的残留神经的传输。在临床评估中,第一个原型能够使患者完成各种功能任务,包括从口袋里拿一个信用卡。

Virtual Integration Environment Architecture

The VIE architecture consists of five main modules: Input, Signal Analysis, Controls, Plant, and Presentation.

The Input module comprises all the input devices that patients can use to signal their intent, including surface electromyograms (EMGs), cortical and peripheral nerve implants, implantable myoelectric sensors (IMESs) and more conventional digital and analog inputs for switches, joysticks, and other control sources used by clinicians. The Signal Analysis module performs signal processing and filtering. More important, this module applies pattern recognition algorithms that interpret raw input signals to extract the user’s intent and communicate that intent to the Controls module. In the Controls module, those commands are mapped to motor signals that control the individual motors that actuate the limb, hand, and fingers.

The Plant module consists of a physical model of the limb’s mechanics. The Presentation module produces a three-dimensional (3D) rendering of the arm’s movement (Figure 1).

图1 假肢三维视图

Interfacing with the Nervous System

Simulink? and the VIE were essential to developing an interface to the nervous system that allows natural and intuitive control of the prosthetic limb system. Researchers record data from neural device implants while the subjects perform tasks such as reaching for a ball in the virtual environment. The VIE modular input systems receive this data, and MATLAB? algorithms decode the subject’s intent by using pattern recognition to correlate neural activity with the subject’s movement (Figure 2). The results are integrated back into the VIE, where experiments can be run in real time.

图2 纽布朗斯威克大学开发了MATLAB应用程序,记录用于模式识别的运动数据。

The same workflow has been used to develop input devices of all kinds, some of which are already being tested by prosthetic limb users at the Rehabilitation Institute of Chicago.

Building Real-Time Prototype Controllers

The Signal Analysis and Controls modules of the VIE form the heart of the control system that will ultimately be deployed in the prosthetic arm. At APL, we developed the software for these modules. Individual algorithms were developed in MATLAB using the Embedded MATLAB? subset and then integrated into a Simulink model of the system as function blocks. To create a real-time prototype of the control system, we generated code for the complete system, including the Simulink and Embedded MATLAB components, with Real-Time Workshop?, and deployed this code to xPC Target?.

This approach brought many advantages. Using Model-Based Design and Simulink, we modeled the complete system and simulated it to optimize and verify the design. We were able to rapidly build and test a virtual prototype system before committing to a specific hardware platform. With Real-Time Workshop Embedded Coder? we generated target-specific code for our processor. Because the code is generated from a Simulink system model that has been safety-tested and verified through simulation, there is no hand-coding step that could introduce errors or unplanned behaviors. As a result, we have a high degree of confidence that the Modular Prosthetic Limb will perform as intended and designed.

Physical Modeling and Visualization

To perform closed-loop simulations of our control system, we developed a plant model representing the inertial properties of the limb system. We began with CAD assemblies of limb components designed in SolidWorks? by our partners. We used the CAD assemblies to automatically generate a SimMechanics? model of the limb linked to our control system in Simulink.

Finally, we linked the plant model to a Java? 3D rendering engine developed at the University of Southern California to show a virtual limb moving in a simulated environment.

更多医疗电子信息请关注:21ic医疗电子频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭