在数字信号处理领域,嵌入式FPGA凭借其并行处理能力、低延迟特性及可重构优势,已成为实现高性能滤波器的核心平台。通过硬件加速与算法优化,FPGA在滤波性能、资源利用率和功耗控制方面展现出显著优势,尤其在脑机接口、雷达信号处理等实时性要求严苛的场景中表现突出。
在工业自动化、智能检测等领域,激光传感器凭借高精度、高响应速度的优势得到广泛应用,而以太网接口因其远距离传输、高带宽的特性,成为激光传感器数据交互的主流选择。然而,激光传感器以太网电路的接地设计直接影响系统稳定性、数据传输可靠性及抗干扰能力,接地不当往往导致信号失真、通信中断甚至设备损坏等问题。本文将深入分析激光传感器以太网电路接地的核心问题、常见类型及优化方案,为工程实践提供参考。
驱动电路作为电源 IC 与 MOS 管的 “桥梁”,其选型需满足三大核心要求:快速充放电能力(确保 MOS 管开关速度)、参数匹配性(适配 IC 驱动能力与 MOS 特性)、稳定性与损耗平衡(抑制振荡并降低功耗)。具体需优先评估两个关键参数: 电源 IC 的驱动峰值电流:查阅芯片手册确认最大输出电流,若电流不足,MOS 管栅极寄生电容(Ciss)无法快速充电,会导致开关延迟和损耗增加。 MOS 管的寄生电容特性:Ciss 值越小,驱动所需能量越少;若 Ciss 较大,需对应提升驱动电路的电流供给能力,否则会引发上升沿振荡或开关效率下降。
在工业自动化、机器人控制、精密机床等依赖高精度位置反馈的系统中,编码器作为核心检测元件,其输出数值的稳定性直接决定了设备的控制精度和运行可靠性。实际工程应用中,编码器数值波动是常见故障之一,除了编码器自身质量缺陷、机械安装偏差等因素外,电源系统的设计不当往往是易被忽视的关键诱因。其中,电源走线功率过大导致的数值波动问题,因涉及电磁兼容、电路损耗、信号干扰等多重技术维度,排查与解决难度较高。本文将深入剖析这一故障的产生机理,结合工程实践探讨有效的防控措施,为相关技术人员提供参考。
DCDC 电源的反馈路径是实现输出电压精准调控的 “感知神经”,其核心功能是将输出端电压信号传输至控制器,通过对比基准电压动态调整开关管导通占空比。反馈路径的布线质量直接决定电源的三项关键指标:输出电压精度(误差可能从 ±1% 扩大至 ±5% 以上)、动态响应速度(负载突变时的电压恢复能力)、系统稳定性(是否出现振荡或纹波超标)。
在电子设备集成化趋势下,强电与弱电共存于同一 PCB 板已成为常态。强电系统(通常指交流 220V 以上或直流 36V 以上电路,如电源回路、电机驱动等)具有高电压、大电流特性,弱电系统(如信号处理、控制电路、通信模块等)则以低电压、小电流、高灵敏度为特点。两者在 PCB 设计中若处理不当,极易产生电磁干扰(EMI)、绝缘击穿、信号失真等问题,甚至引发安全隐患。因此,掌握强电与弱电 PCB 设计的关键注意事项,是保障设备稳定性、安全性和可靠性的核心前提。
晶振负载电容(CL)与两端外接电容(通常标注为 CL1、CL2)的核心差异始于定义本质。负载电容是晶振出厂时固化的固有电气参数,是跨接晶体两端的总有效电容等效值,由晶体自身工艺决定,无法在应用中更改。常见标准值为 6pF、12.5pF、16pF、20pF 等,低功耗设备(如蓝牙耳机、腕表)多采用 6-12pF 小容量负载电容,通用电子设备则以 15-30pF 为主。
在以太网硬件设计中,变压器与 RJ45 连接器之间的走线常被视为 “过渡环节”,却频繁引发通信异常、丢包等问题。工程师最困惑的核心疑问是:“为何短短几厘米的走线,必须严格控制阻抗?” 答案藏在高速信号传输的本质中 —— 以太网(尤其是百兆及以上速率)依赖差分信号传输,而信号在阻抗突变处会产生反射,导致上升沿失真、信号震荡等问题。变压器的次级绕组设计已匹配 100Ω 差分阻抗,RJ45 连接器及网线的特性阻抗也为 100Ω,若中间走线阻抗偏离标准,就会形成 “阻抗断层”,如同声波在不同介质中传播时的反射衰减,直接导致眼图闭合、误码率升高。
在电力系统、通信设备、建筑设施等各类场景中,雷电冲击和过电压是造成设备损坏、系统瘫痪的重要隐患。雷电产生的瞬时高电压可达数百万伏,而操作过电压、谐振过电压等内部过电压也会超出设备额定耐受值,引发绝缘击穿、元器件烧毁等故障。因此,采取科学有效的防雷及过电压保护措施,是保障设备安全运行和人员生命安全的关键。本文将详细介绍当前行业内常用的保护方法,结合技术原理与应用场景展开分析。
降压变压器用于电子和电气领域,将初级电压电平转换为次级输出端的较低电压。这是通过初级绕组和次级绕组的比率实现的。对于降压变压器,初级侧的绕组数量高于次级侧。
在高速FPGA设计中,信号完整性(Signal Integrity, SI)直接影响系统稳定性与性能。随着DDR4、PCIe Gen5等高速接口的普及,传统布线方法已难以满足时序与噪声要求。本文结合工程实践,系统阐述信号完整性优化的核心方法,并提供可复用的代码示例。
RC振荡器是一种通过电阻(R)和电容(C)构成选频网络实现自激振荡的反馈型电路,不包含电感元件,主要适用于1Hz-1MHz的低频信号生成 [1]
在FPGA设计中,乘法器作为核心运算单元,其资源消耗常占设计总量的30%以上。尤其在实现高精度计算或大规模矩阵运算时,DSP块的过度使用会导致时序收敛困难和成本上升。通过移位加法替代传统乘法器,可在保持计算精度的同时,显著降低资源占用。本文将深入探讨这一优化技术的实现原理与工程实践。
在人工智能硬件加速领域,FPGA凭借其可重构计算架构和低延迟特性,成为深度神经网络(DNN)部署的核心平台。与传统GPU的固定计算流水线不同,FPGA通过动态配置硬件资源,可实现从卷积层到全连接层的全流程优化。本文将从算法级优化、硬件架构设计、协同设计方法三个维度,解析FPGA在DNN部署中的关键策略。
在边缘AI推理场景中,传统架构面临能效比与实时性的双重挑战。RISC-V开源指令集与嵌入式FPGA(eFPGA)的异构协同架构,通过动态任务分配与硬件加速,实现了能效比的大幅提升。以安路科技PH1P系列FPGA与RISC-V软核的协同设计为例,该架构在智能摄像头场景中实现了2.3倍的能效提升,功耗降低至传统方案的38%。