在科技飞速发展的当下,边缘 AI 正经历着一场深刻的变革。从最初的 TinyML 微型机器学习探索低功耗 AI 推理,到边缘推理框架的落地应用,再到平台级 AI 部署工具的兴起以及垂类模型的大热,我们已经成功实现了 “让模型跑起来” 的阶段性目标。然而,这仅仅是边缘 AI 发展的起点,其未来的演进方向正逐渐聚焦于一个更为关键的问题:当 AI 模型能够在边缘设备上稳定运行后,它们能否进一步实现协作,从而推动边缘 AI 迈向更高的智能形态?
VK36N3D 芯片专为检测外部触摸按键上人手的触摸动作而设计,具有极高的集成度。这意味着在实际应用中,工程师仅需搭配极少的外部组件,就能轻松实现触摸按键的检测功能,大大简化了电路设计,降低了生产成本。例如,在一些小型智能设备中,使用 VK36N3D 芯片可以使电路板的布局更加紧凑,减少了因过多外部组件带来的空间占用和潜在故障点。
在现代电子设备中,晶振作为提供精确时钟信号的核心元件,其重要性不言而喻。从智能手机、计算机到汽车电子、通信基站,晶振的身影无处不在,它如同电子设备的 “心脏起搏器”,确保各种复杂电路有条不紊地运行。而晶振的核心 —— 石英晶体,凭借其独特的物理特性,在经过一系列精密复杂的生产工艺后,华丽变身为高精度振荡器,为电子设备的稳定运行提供坚实保障。
安全地的主要作用是保障人身安全和设备的稳定运行。在电气设备中,当发生绝缘损坏等故障时,可能会使设备外壳带电,若没有安全接地,人体一旦接触到带电外壳,就会发生触电事故。通过将设备外壳与大地进行可靠连接,当出现故障电流时,电流能够迅速通过接地导线流入大地,因为大地的电位被视为零电位,且接地电阻通常很小,根据欧姆定律,这样就可以保证设备外壳的电位接近大地电位,从而避免人体触电。例如,在家庭用电中,三孔插座的最上方插孔就是连接安全地的,所有使用三脚插头的电器,其金属外壳都通过插头与安全地相连,为用户提供了基本的安全保障。
在电子电路设计领域,运算放大器扮演着极为关键的角色,广泛应用于信号放大、滤波、比较等众多电路之中。而在考量运算放大器的性能时,“最大电源电流” 是一个不容忽视的重要参数。它不仅直接关联到运算放大器自身的功耗情况,更对整个电路的稳定性、可靠性以及电池供电系统的续航能力等方面产生着深远影响。因此,深入探究运算放大器的 “最大电源电流”,对于优化电路设计、提升系统性能具有重要意义。
随着环保意识的增强和对可持续能源的追求,电动汽车(EV)作为一种清洁能源交通工具,正逐渐成为汽车行业发展的主流趋势。电动汽车的核心部件之一是充电机,它负责将外部电能转化为电池可存储的能量。而 CAN(Controller Area Network)总线作为一种高效、可靠的通信协议,在电动汽车充电机的运行中发挥着至关重要的作用。
在 PCB 设计流程中,绘制完成并不意味着工作的结束。据行业统计,超过 60% 的电路板故障源于设计阶段的疏漏,而这些问题往往能通过细致的后期检查避免。以下从电气性能、布局合理性、工艺可行性三个维度,梳理 PCB 设计完成后必须排查的关键问题。
NDI就是通过IP网络进行超低延时、无损传输、交互控制的标准协议;NDI协议最大的不同是:NDI视频传输可以摆脱传统HDMI、SDI线。
LC电路,也称为谐振电路、槽路或调谐电路,是包含一个电感(用字母L表示)和一个电容(用字母C表示)连接在一起的电路。
在现代生活中,电力如同一股无形的力量,驱动着社会的运转。从照亮黑夜的灯光,到飞速运转的电子设备,电力无处不在。
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
双有源桥(Dual Active Bridge,DAB)DC-DC变换器是一种先进的电力转换技术,具有双向能量流动能力,可以同时实现直流到直流的升压和降压转换。
电源是电子电路中有源器件工作的能量来源,电源的性能直接影响电子电路的性能,电源可以说是电子系统的“心脏”。
因为电源的反馈端加入了前馈电容,所以与反馈电阻形成新的零点和极点,虽然Cff在其零点频率之后引入了增益提升,此处涉及较深的控制理论,不再展开叙述。
随着汽车电动化程度的不断提高,电机驱动功率模块的性能和可靠性愈发重要。然而,这些模块在工作过程中会产生大量热量,若不能及时有效地散发出去,将导致模块温度过高,进而影响其性能和寿命。例如,IGBT 模块在导通和关断过程中会产生功率损耗,这些损耗以热量的形式释放出来。而且,汽车运行工况复杂多变,功率模块的发热情况也随之动态变化,这对冷却系统的适应性提出了很高要求。