当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]随着生活水平的提高,定时器的用途也越来越广泛。比如对开水机、热水器的定时控制,现在有了大功率定时器,定时开机、定时关机,实现节能、安全、健康的使用。一、硬件设计

随着生活水平的提高,定时器的用途也越来越广泛。比如对开水机、热水器的定时控制,现在有了大功率定时器,定时开机、定时关机,实现节能、安全、健康的使用。

一、硬件设计

选用通用定时器TIM5的CH1,其输入管脚为PA0,在开发板上PA0连接按键,当按键按下输入高电平,按键松开输入低电平,实验测量高电平的脉冲宽度。

二、软件设计

1. 配置中断向量表的优先级

因只使用一个中断 TIM5_IRQn,抢占优先级与子优先级可随意配置。

代码如下:

static void General_NVIC_Config(void)

{

NVIC_InitTypeDef NVIC_InitStructure;

NVIC_PriorityGroupConfig (NVIC_PriorityGroup_0);

NVIC_InitStructure.NVIC_IRQChannel = GENERAL_TIM_IRQn;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;

NVIC_Init(&NVIC_InitStructure);

}

2. GPIO配置

PA0配置为浮空输入模式。

static void General_GPIO_Gonfig(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB2PeriphClockCmd(GENERAL_TIM_CH1_GPIO_CLK , ENABLE);

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_InitStructure.GPIO_Pin = GENERAL_TIM_CH1_PIN;

GPIO_Init(GENERAL_TIM_CH1_PORT, &GPIO_InitStructure);

}

3. 定时器模式配置,其中包含时基结构体、输入捕获结构体的初始化以及中断的开启。

static void GeneralTim_Config(void)

{

// 开启定时器时钟,即内部时钟CK_INT=72M

GENERAL_TIM_APBxClock_FUN(GENERAL_TIM_CLK,ENABLE);

/*--------------------时基结构体初始化-------------------------*/

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

// 自动重装载寄存器的值,累计TIM_Period+1个频率后产生一个更新或者中断

TIM_TimeBaseStructure.TIM_Period=GENERAL_TIM_PERIOD;

// 驱动CNT计数器的时钟 = Fck_int/(psc+1)

TIM_TimeBaseStructure.TIM_Prescaler= GENERAL_TIM_PSC;

// 时钟分频因子 ,配置死区时间时需要用到

TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;

// 计数器计数模式,设置为向上计数

TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;

// 重复计数器的值,没用到不用管

TIM_TimeBaseStructure.TIM_RepetitionCounter=0;

// 初始化定时器

TIM_TimeBaseInit(GENERAL_TIM, &TIM_TimeBaseStructure);

/*--------------------输入捕获结构体初始化-------------------*/

TIM_ICInitTypeDef TIM_ICInitStructure;

// 配置输入捕获的通道,需要根据具体的GPIO来配置

TIM_ICInitStructure.TIM_Channel = GENERAL_TIM_CHANNEL_x;

// 输入捕获信号的极性配置

TIM_ICInitStructure.TIM_ICPolarity = GENERAL_TIM_STRAT_ICPolarity;

// 输入通道和捕获通道的映射关系,有直连和非直连两种

TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;

// 输入的需要被捕获的信号的分频系数

TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;

// 输入的需要被捕获的信号的滤波系数

TIM_ICInitStructure.TIM_ICFilter = 0;

// 定时器输入捕获初始化

TIM_ICInit(GENERAL_TIM, &TIM_ICInitStructure);

// 清除更新和捕获中断标志位

TIM_ClearFlag(GENERAL_TIM, TIM_FLAG_Update|GENERAL_TIM_IT_CCx);

// 开启更新和捕获中断

TIM_ITConfig (GENERAL_TIM, TIM_IT_Update | GENERAL_TIM_IT_CCx, ENABLE );

// 使能计数器

TIM_Cmd(GENERAL_TIM, ENABLE);

}

4. 输入捕获初始化函数

void GeneralTim_Init(void)

{

General_NVIC_Config();

General_GPIO_Gonfig();

GeneralTim_Config();

}

5. 中断函数

首先判断定时器是否溢出定时周期,并做处理。然后上升沿捕获时将计数器寄存器的值清零,中断改为下降沿触发。下降沿捕获中断时,读取计数值,改为上升沿触发,开始捕获标识清零,结束捕获置1,。。。。。。。。

void GENERAL_TIM_INT_FUN(void)

{

// 当要被捕获的信号的周期大于定时器的最长定时时,定时器就会溢出,产生更新中断

// 这个时候我们需要把这个最长的定时周期加到捕获信号的时间里面去

if ( TIM_GetITStatus ( GENERAL_TIM, TIM_IT_Update) != RESET )

{

TIM_ICUserValueStructure.Capture_Period ++;

TIM_ClearITPendingBit ( GENERAL_TIM, TIM_FLAG_Update );

}

// 上升沿捕获中断

if ( TIM_GetITStatus (GENERAL_TIM, GENERAL_TIM_IT_CCx ) != RESET)

{

// 第一次捕获

if ( TIM_ICUserValueStructure.Capture_StartFlag == 0 )

{

// 计数器清0

TIM_SetCounter ( GENERAL_TIM, 0 );

// 自动重装载寄存器更新标志清0

TIM_ICUserValueStructure.Capture_Period = 0;

// 存捕获比较寄存器的值的变量的值清0

TIM_ICUserValueStructure.Capture_CcrValue = 0;

// 当第一次捕获到上升沿之后,就把捕获边沿配置为下降沿

GENERAL_TIM_OCxPolarityConfig_FUN(GENERAL_TIM, TIM_ICPolarity_Falling);

// 开始捕获标准置1

TIM_ICUserValueStructure.Capture_StartFlag = 1;

}

// 下降沿捕获中断

else // 第二次捕获

{

// 获取捕获比较寄存器的值,这个值就是捕获到的高电平的时间的值

TIM_ICUserValueStructure.Capture_CcrValue =

GENERAL_TIM_GetCapturex_FUN (GENERAL_TIM);

// 当第二次捕获到下降沿之后,就把捕获边沿配置为上升沿,好开启新的一轮捕获

GENERAL_TIM_OCxPolarityConfig_FUN(GENERAL_TIM, TIM_ICPolarity_Rising);

// 开始捕获标志清0

TIM_ICUserValueStructure.Capture_StartFlag = 0;

// 捕获完成标志置1

TIM_ICUserValueStructure.Capture_FinishFlag = 1;

}

TIM_ClearITPendingBit (GENERAL_TIM,GENERAL_TIM_IT_CCx);

}

}

6. 主函数,计算脉冲宽度利用串口输出

int main()

{

uint32_t time;

// TIM 计数器的驱动时钟

float TIM_PscCLK = 72000000.0 / (GENERAL_TIM_PSC+1);

USART_Config();

GeneralTim_Init();

printf("rn ----输入捕获测量脉宽实验----rn");

while(1)

{

if(TIM_ICUserValueStructure.Capture_FinishFlag == 1)

{

time = (TIM_ICUserValueStructure.Capture_Period * (GENERAL_TIM_PERIOD + 1)

+ TIM_ICUserValueStructure.Capture_CcrValue + 1);

printf("t=%fn",time/TIM_PscCLK);

TIM_ICUserValueStructure.Capture_FinishFlag = 0;

}

}

}

7. 相关宏定义

#define GENERAL_TIM TIM5

#define GENERAL_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd

#define GENERAL_TIM_CLK RCC_APB1Periph_TIM5

#define GENERAL_TIM_PERIOD 0XFFFF

#define GENERAL_TIM_PSC (72-1)

// TIM 输入捕获通道GPIO相关宏定义

#define

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭