当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于SIM300C的远程数据采集传输终端设计

农业具有对象多样、地域广阔、偏僻分散、通信条件落后等特点,在绝大多数情况下,农业观测现场经常无人值守,导致信息获取非常困难。要解决这个问题,需实现数据的远程传输与交换[1]。通用分组无线技术GPRS(General Packet Radio Service)是在现有的GSM系统上发展起来的,充分利用了GSM系统的无线结构,在移动用户和数据网络之间提供一种连接,向移动用户提供无线IP服务[2]。采用GPRS方案对数据量少、突发式、频繁传送的农业监测数据传输是一种较好的选择。
  为了满足数据传输终端低成本、小型化和移动灵活等要求,广泛采用微处理器对GPRS模块进行控制。早期厂家推出的GPRS模块都不支持TCP/IP协议,因此,需要在微处理器中嵌入TCP/IP协议,这样既增加了硬件的负担,又增加了硬件的成本[3-4]。近几年,SIMCOM、SIEMENS等公司推出内嵌TCP/IP协议的GPRS模块,不仅降低了GPRS模块对微处理器的要求,还缩短了用户的开发周期。针对水产养殖环境监测系统数据传输频繁、数据量较小、现场改造困难、布线成本高等特点,本文介绍的系统采用GPRS技术,用低成本的单片机,A/D转换芯片,以及内嵌TCP/IP协议的GPRS无线通信模块SIM300C,实现水产养殖环境数据采集和数据的远程传输。
1 系统构成
   远程数据采集传输终端以单片机AT89S52为主控制器,实现现场数据采集和远程数据传输两大功能。传感器采集的8路模拟信号以差分方式送入2片A/D转换芯片并转换成相应的数字量,每一轮转换结束后,单片机将16组数据放入1个数组中并添加帧头和帧尾,通过串口发送给SIM300C模块, SIM300C自动将要发送的数据打包成TCP/IP数据包,并通过GPRS网络与Internet上的服务器建立连接,将采集到的数据发送给服务器。
2 系统硬件设计
  系统硬件设计分为A/D转换硬件设计和SIM300C模块外围电路设计。
2.1 数据采集与A/D转换硬件设计
  A/D转换单元采用2片A/D转换芯片MAX186[5]。MAX186是MAXIM公司的8输入通道12位串行输出的A/D转换芯片,其输入端既可以单端输入8路模拟信号,也可差分输入4路模拟信号。MAX186主要信号线有:串行数据输出(DOUT)、串行选通脉冲输出(SSTRB)、串行数据输入(DIN)、低电平有效芯片选择(CS)、串行时钟输入SCLK。这些信号分别与单片机的P0.0~P0.4相连,另1片MAX186与单片机的P2.0~P2.4相连,如图1所示。AT89S52通过P0.3实现对MAX186的片选;通过P0.4向MAX186的SCLK送入串行时钟信号;通过P0.2向MAX186的DIN输入8位控制字;通过P0.1接收MAX186的SSTRB脚的电平输出,电平由低变高说明模拟信号经采样保持、A/D转换完毕,AT89S52可以接收数据;通过P0.0读入MAX186 DOUT引脚串行输出的12位数字量[6]。


2.2 SIM300C外围电路设计
  SIM300C是SIMCOM公司的无线通信模块。该模块尺寸小、功耗低,内嵌强大的TCP/IP协议,提供通用的AT控制命令[7]。SIM300C内部集成了完整的射频电路和GSM基带处理器,提供2个串口、1个SIM卡接口、通用I/O接口等[8]。这些接口信号都通过60针的板对板连接器进行连接。
2.2.1 电源
  SIM300C模块的1、3、5、7、9脚为电源输入引脚VBAT,2、4、6、8、10脚是地。由于模块的供电电压为3.4~4.5 V(典型值为4.2 V),采用 5 V供电时,需要进行5 V到4.2 V的电压转换。设计中使用MICREL公司的MIC29300系列芯片为SIM300C提供4.2 V的电压,其输出电流可达到3 A,能够满足SIM300C的要求。电源电路如图2所示。

2.2.2 串口和SIM卡接口
  SIM300C模块为用户提供了:通用串口和调试串口。因为模块提供的2个串口都是TTL电平,需通过电平转换芯片,将TTL电平转换成RS232电平。设计中采用MAXIM公司的MAX232芯片进行电平转换,使用TXD、RXD、GND 3根线构成3线串口。
  SIM300C模块提供的SIM卡接口信号有:VSIM-SIM卡电源、SIMRST-复位、SIMCLK-时钟、SIMDATA-数据。SIM卡与模块之间通过SIM卡座进行连接,设计中采用6针SIM卡座,其信号线主要有:电源(VCC)、地(GND)、复位(RST)、状态(VPP)、时钟(CLK)、数据(I/O),其中状态线VPP不接。SIM卡电源可以是1.8 V或3 V,RST、CLK、I/O 3个引脚分别连接22 ?赘电阻后,再与SIM300C的SIMRST、SIMCLK、SIMDATA相连,SIMDATA与VSIM间还需接1个10 k?赘的上拉电阻。另外,在SIM卡接口电路中,为了减小静电干扰,应使用静电防护器件,设计中采用了SEMI公司的SMF05C[8]。其硬件连接如图3所示。


[!--empirenews.page--]3 系统软件设计
    系统以30 s为1个采集周期,初始化完毕后,单片机通知GPRS模块连接服务器准备发送数据,连接服务器成功后,启动2片A/D转换芯片MAX186对8路传感器信号进行A/D转换, A/D转换结束后,向GPRS模块发送帧头FF AA,紧接着发送16组数据,最后发送帧尾0D 0A,等待下一个采集周期。系统工作流程如图4所示。

3.1 A/D转换
   MAX186为串行工作方式,在进行A/D转换之前要对MAX186进行配置。首先将CS管脚置低电平选通芯片,在SCLK管脚输入外部时钟,在时钟SCLK的每1个上升沿把1个最高位为“1”的控制字节的各位送入输入移位寄存器,控制器收到控制字节后,选择控制字中给定的模拟通道,并在SCLK下降沿启动A/D转换。控制字节的格式如表1所示。在控制字节的最后1位之后,SSTRB管脚有1个时钟周期的高电平,在其后的12个时钟周期SCLK的每1个下降沿,转换后数据的各位出现在DOUT端,单片机从DOUT管脚读入12位数字量。


3.2 GPRS通信
  在GPRS通信中,有2种传输协议(TCP/UDP)可供选择。在本系统中,由于数据量相对较少,传输时间间隔较长,使用了更为可靠的TCP作为接入方式。
  单片机通过串口使用AT指令[9]控制GPRS模块。系统启动后,为防止因上次使用时未关闭连接,造成连接服务器失败,所以单片机先向SIM300C发送关闭连接的指令:AT+CIPCLOSE,断开连接成功返回“CLOSE OK”。随后,单片机向SIM300C发送连接服务器命令:AT+CIPSTART=“TCP”、“202.205.84.222”、2020,用来将模块接入GPRS网络,使用“TCP”方式接入,服务器IP地址为202.205.84.222,侦听端口号为2020。连接指令送入GPRS模块后,单片机通过串口接收GPRS 模块返回的信息。返回“OK”说明指令正确,返回“ERROR”说明指令输入不正确,需要重新连接。等待一段时间后,GPRS 模块会返回1个字符串说明目前的连接状态:若返回“CONNECT OK”说明已经连上服务器;若连接失败,返回STATE状态:“CONNECT FAIL”,需要重新进行连接或者检查服务器的网络连接状态。
  服务器连接成功后,单片机向SIM300C输入发送数据指令“AT+CIPSEND=20”,然后送入要发送的数据,包括帧头、16组数据及帧尾。
4 系统验证
  对该系统的验证需要1台具有公网IP地址的计算机作为Internet上的服务器,1张开通GPRS功能的SIM卡且接入方式为CMNET,服务器数据收发DEMO软件。
  实验中,将GPRS模块的串口与单片机串口相连,A/D转换芯片输入端以差分方式接入2路温度传感器PT100和1路湿度传感器。终端以30 s为1个周期,每1周期采集2片MAX186的8路差分输入模拟信号,采集结束,通过GPRS网络将数据发送到服务器。服务器端用Microsoft Winsock Control 6.0(SP6)控件开发了服务器端接收软件,完成对网络数据接收、数据存储及数据显示。服务器软件每次接收到终端的数据时,都将数据保存在一个文本文档内,并且记录接收数据的系统时间。图5为根据服务器文档记录的数据绘制的实验室24小时温度变化曲线。
  测试结果表明:终端采集到的温度变化曲线符合实际温度变化,说明A/D转换部分能够准确地采集传感器输出的模拟信号;测试过程中,未发现GPRS模块与服务器端连接断开,观察服务器文本记录的数据,未发现数据丢失,数据均以30 s为1个周期被服务器接收,少数数据延迟几秒接收,说明以TCP协议进行数据传输是可靠的,即使无线网络发生拥塞时,也不会造成数据的丢失,而只是发生数据延迟。
  本文设计的基于SIM300C模块的远程数据采集传输终端,具有成本低、体积小、布设方便、运行稳定等特点,克服了现场环境改造困难、布线成本高等问题,能够适应水产养殖环境中监测点分散和潮湿的环境,为现场环境数据的采集和数据的远程传输提出了一种解决方案。基于SIM300C的远程数据采集传输终端与远程服务器间可以通过GPRS无线网络进行可靠的数据传输,能够按设定的采集周期正确采集和传输现场环境数据,满足实际应用中对实时性的要求。在今后的研究中,需要为该系统增加LCD显示和键盘模块,以实现数据的实时显示,现场工作人员可以通过键盘对系统进行简单的控制;完善服务器端上位机软件,提供更为友好的数据显示界面。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

摘要:介绍了地基沉降远程数据采集系统服务器端软件的设计与实现方法。该软件能够并发处理多个远程客户端传送过来的数据,并将数据保存到数据库中,同时采用B/S架构对采集的数据进行管理和分析,从而实现对地基沉降远程采集数据的实时...

关键字: 地基沉降 远程数据采集 软件系统 线程

根据SIM300C的远程数据采集传输终端设计策略 概述       农业具有对象多样、地域广阔、偏僻分散、通信条件落后等特点,在绝大多数情况下,农

关键字: 终端设计 远程数据采集 SIM300

在2019年德国柏林国际消费类电子产品展览会(IFA 2019)上,Qualcomm宣布,通过跨骁龙8系、7系和6系扩展其5G移动平台产品组合,公司计划规模化加速5G在2020年的全球商用进程。

关键字: QUALCOMM 终端设计 5G终端 移动平台

“2019年5G时代开启,全球超过40家运营商部署5G网络,超过40家终端厂商宣布推出5G终端;到2022年,全球5G智能手机累计出货量预计将超过14亿部;到2025年,全球5G连接数预计将达到

关键字: 高通 终端设计 5G HZ

随着家电、通信、消费电子“3C”合一的大趋势,基于IP宽带网络的IPTV系统逐渐成为热点。IPTV(Internet Protocol TV or InteracTIve Personal.

关键字: DSP 宽带信息 嵌入式处理器 终端设计

随着电子、计算机技术的发展,视频监控系统正从模拟技术向数字技术方向发展。从硬件形式上看,视频监控技术的发展经历了三个阶段:模拟视频信号监控、PC机加视频卡的数字视频监控和基于嵌入式技术的数字视频监控[1]。基于PC机技...

关键字: DSP 智能视频监控 终端设计 设计教程

基于电能测量与控制一体化集成管理的目的,设计了以钜泉ATT7037AU SOC芯片为核心的电能参数检测及用电管理终端核心电路。阐述了自适应负载识别的原理,并通过空调实例提出并说明了一种负载样本数据库和特定样本数据模型的建...

关键字: 智能用电 控制 终端设计 空调

  随着社会的发展,我国人口老龄化越来越严重,对于老人的监护成为了一个社会问题。本文根据老人监护的需求特点,利用我国自主研发的北斗卫星定位系统,结合北斗定位模块

关键字: 终端设计 DM BSP 主控芯片

引言北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国正在实施的自主研发、独立运行的全球卫星导航系统。北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服...

关键字: Zigbee 北斗导航 终端设计 无线终端
关闭
关闭