• 单片机时序分析

    前面我们介绍了延时程序,但这还不完善,因为,我们只知道DJNZ R6,D2这句话会被执行62500次,但是执行这么多次需要多长时间呢?是否满足我们的要求呢?我们还不知道,所以下面要来解决这个问题。 扩展阅读:51单片机时序及延时分析 先提一个问题:我们学校里什么是最重要的。(铃声)校长可以出差,老师可以休息,但学校一日无铃声必定大乱。整个学校就是在铃声的统一指挥下,步调一致,统一协调地工作着。这个铃是按一定的时间安排来响的,我们可以称之为“时序��时间的顺序”。一个由人组成的单位尚且要有一定的时序,计算机当然更要有严格的时序。事实上,计算机更象一个大钟,什么时候分针动,什么时候秒针动,什么时候时针动,都有严格的规定,一点也不能乱。计算机要完成的事更复杂,所以它的时序也更复杂。 我们已知,计算机工作时,是一条一条地从ROM中取指令,然后一步一步地执行,我们规定:计算机访问一次存储器的时间,称之为一个机器周期。这是一个时间基准,好象我们人用“秒”作为我们的时间基准一样,为什么不干脆用“秒”,多好,很习惯,学下去我们就会知道用“秒”反而不习惯。 一个机器周期包括12个时钟周期。下面让我们算一下一个机器周期是多长时间吧。设一个单片机工作于12M晶振,它的时钟周期是1/12(微秒)。它的一个机器周期是12*(1/12)也就是1微秒。(请计算一个工作于6M晶振的单片机,它的机器周期是多少)。 MCS-51单片机的所有指令中,有一些完成得比较快,只要一个机器周期就行了,有一些完成得比较慢,得要2个机器周期,还有两条指令要4个机器周期才行。这也不难再解,不是吗?我让你扫地的执行要完成总得比要你完成擦黑板的指令时间要长。为了恒量指令执行时间的长短,又引入一个新的概念:指令周期。所谓指令周期就是指执行一条指令的时间。INTEL对每一条指令都给出了它的指令周期数,这些数据,大部份不需要我们去记忆,但是有一些指令是需要记住的,如DJNZ指令是双周期指令。 下面让我们来计算刚才的延时。首先必须要知道晶振的频率,我们设所用晶振为12M,则一个机器周期就是1微秒。而DJNZ指令是双周期指令,所以执行一次要2个微秒。一共执行62500次,正好125000微秒,也就是125毫秒。 【更多资源】

    时间:2012-10-16 关键词: 单片机 时序分析

  • 单片机延时程序分析

    用过前面的学习,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。 DELAY: MOV R7,#250   ;(6) D1: MOV R6,#250            ;(7) D2: DJNZ R6,D2           ;(8) DJNZ R7,D1                       ;(9) RET                              ;(10) MOV:这是一条指令,意思是传递数据。说到传递,我们都很清楚,传东西要从一个人的手上传到另一个人的手上,也就是说要有一个接受者,一个传递者和一样东西。从指令MOV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。那么MOV R6,#250是什么意思,应当不用分析了吧。 DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。D2在本行的前面,我们已学过,这称之为标号。标号的用途是什么呢?就是给本行起一个名字。DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。本条指令的最终执行结果就是,在原地转圈250次。 执行完了DJNZ R6,D2之后(也就是R6的值等于0之后),就会去执行下面一行,也就是DJNZ R7,D1,请大家自行分析一下这句话执行的结果。(转去执行MOV R6,#250,同时R7中的值减1),最终DJNZ R6,D2这句话将被执行250*250=62500次,执行这么多次同一条指令干吗?就是为了延时。

    时间:2012-10-16 关键词: 分析 延时程序 单片机

  • 半导体存储器

    几个基本概念 数的本质和物理现象。 我们知道,计算机可以进行数学运算,这可令我们非常的难以理解,计算机吗,我们虽不了解它的组成,但它总只是一些电子元器件,怎么可以进行数学运算呢?我们做数学题如37+45是这样做的,先在纸上写37,然后在下面写45,然后大脑运算,最后写出结果,运算的原材料:37、45和结果:82都是写在纸上的,计算机中又是放在什么地方呢?为了解决这个问题,先让我们做一个实验: 这里有一盏灯,我们知道灯要么亮,要么不亮,就有两种状态,我们可以用’0’和’1’来代替这两种状态,规定亮为’1’,不亮为’0’。现在放上两盏灯,一共有几种状态呢?我们列表来看一下:     请大家自已写上3盏灯的情况000 001 010 011 100 101 110 111 我们来看,这个000,001,101 不就是我们学过的的二进制数吗?本来,灯的亮和灭只是一种物理现象,可当我们把它们按一按的顺序排更好后,灯的亮和灭就代表了数字了。让我们再抽象一步,灯为什么会亮呢?看电路1,是因为输出电路输出高电平,给灯通了电。因此,灯亮和灭就可以用电路的输出是高电平还是低电平来替代了。这样,数字就和电平的高、低联系上了。(请想一下,我们还看到过什么样的类似的例子呢?(海军之)灯语、旗语,电报,甚至红、绿灯) 2.位的含义: 通过上面的实验我们已经知道:一盏灯亮或者说一根线的电平的高低,可以代表两种状态:0和1。实际上这就是一个二进制位,因此我们就把一根线称之为一“位”,用BIT表示。 3.字节的含义: 一根线可以表于0和1,两根线可以表达00,01,10,11四种状态,也就是可以表于0到3,而三根可以表达0-7,计算机中通常用8根线放在一起,同时计数,就可以表过到0-255一共256种状态。这8根线或者8位就称之为一个字节(BYTE)。不要问我为什么是8根而不是其它数,因为我也不知道。(计算机世界是一个人造的世界,不是自然界,很多事情你无法问为什么,只能说:它是一种规定,大家在以后的学习过程中也要注意这个问题) 一、存储器的工作原理: 1、存储器构造     存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。 让我们看图2。这是一个存储器的示意图:一个存储器就象一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就象是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图3)。可是问题出来了,看图2,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图2,在每个单元上有个控制线,我想要把数据放进哪个单元,就给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2.存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。 我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。     3.存储器的选片及总线的概念 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件,如图4所示。这样问题就出来了,这八根线既然不是存储器和计算机之间专用的,如果总是将某个单元接在这八根线上,就不好了,比如这个存储器单元中的数值是0FFH另一个存储器的单元是00H,那么这根线到底是处于高电平,还是低电平?岂非要打架看谁历害了?所以我们要让它们分离。办法当然很简单,当外面的线接到集成电路的引脚进来后,不直接接到各单元去,中间再加一组开关(参考图4)就行了。平时我们让开关打开着,如果确实是要向这个存储器中写入数据,或要从存储器中读出数据,再让开关接通就行了。这组开关由三根引线选择:读控制端、写控制端和片选端。要将数据写入片中,先选中该片,然后发出写信号,开关就合上了,并将传过来的数据(电荷)写入片中。如果要读,先选中该片,然后发出读信号,开关合上,数据就被送出去了。注意图4,读和写信号同时还接入到另一个存储器,但是由于片选端不同,所以虽有读或写信号,但没有片选信号,所以另一个存储器不会“误会”而开门,造成冲突。那么会不同时选中两片芯片呢?只要是设计好的系统就不会,因为它是由计算控制的,而不是我们人来控制的,如果真的出现同时出现选中两片的情况,那就是电路出了故障了,这不在我们的讨论之列。 从上面的介绍中我们已经看到,用来传递数据的八根线并不是专用的,而是很多器件大家共用的,所以我们称之为数据总线,总线英文名为BUS,总即公交车道,谁者可以走。而十六根地址线也是连在一起的,称之为地址总线。

    时间:2012-10-16 关键词: 半导体存储器

  • 半导体存储器的分类

    按功能能分为只读和随机存取存储器两大类。所谓只读,从字面上理解就是只能从里面读,不能写进去,它类似于我们的书本,发到我们手回之后,我们只能读里面的内容,不能随意更改书本上的内容。只读存储器的英文缩写为ROM(READ ONLY MEMORY) 所谓随机存取存储器,即随时能改写,也能读出里面的数据,它类似于我们的黑板,我能随时写东西上去,也能用黑板擦擦掉重写。随机存储器的英文缩写为RAM(READ RANDOM MEMORY)这两种存储器的英文缩写一定要记牢。 注意:所谓的只读和随机存取都是指在正常工作情况下而言,也就是在使用这块存储器的时候,而不是指制造这块芯片的时候。不然,只读存储器中的数据是怎么来的呢?其实这个道理也很好理解,书本拿到我们手里是不能改了,能当它还是原材料——白纸的时候,当然能由印刷厂印上去了。 顺便解释一下其它几个常见的概念。 PROM,称之为可编程存储器。这就象我们的练习本,买来的时候是空白的,能写东西上去,可一旦写上去,就擦不掉了,所以它只能用写一次,要是写错了,就报销了。(现在已经被淘汰) EPROM,称之为紫外线擦除的可编程只读存储器。它里面的内容写上去之后,如果觉得不满意,能用一种特殊的办法去掉后重写,这就是用紫外线照射,紫外线就象“消字灵”,能把字去掉,然后再重写。当然消的次数多了,也就不灵光了,所以这种芯片能擦除的次数也是有限的——几百次吧。(现在已经被淘汰) EEPROM,也叫 E2PROM称之为电可擦可编程只读存储器,它和EEPROM类似,写上去的东西也能擦掉重写,但它要方便一些,不需要光照了,只要用电就能擦除或者重新改写数据,所以就方便许多,而且寿命也很长(几万到几十万次不等)。 FLASH,称之为闪速存储器,属于EEPROM的改进产品,它的最大特点是必须按块(Block)擦除(每个区块的大小不定,不同厂家的产品有不同的规格), 而EEPROM则可以一次只擦除一个字节(Byte)。FLASH现在常用于大容量存储,比如u盘 再次强调,这里的所有的写都不是指在正常工作条件下。不管是PROM还是EPROM,它们的写都要有特殊的条件,一般我们用一种称之为“编程器”的设备来做这项工作,一旦把它装到它的工作位置,就不能随便改写了。

    时间:2012-10-16 关键词: 分类 半导体存储器

  • 单片机的外部结构

    拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。 1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。 2、振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶振,电容,连上就可以了,按图1接上即可。3、复位引脚:按图1中画法连好,至于复位是何含义及为何需要复要复位,在单片机功能中介绍。4、EA引脚:EA引脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。 图1 二、 任务分析 我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个引脚相连,否则单片机就没法控制它了,那么和哪个引脚相连呢?单片机上除了刚才用掉的5个引脚,还有35个,我们将这个LED和1脚相连。(见图1,其中R1是限流电阻) 按照这个图的接法,当1脚是高电平时,LED不亮,只有1脚是低电平时,LED才发亮。因此要1脚我们要能够控制,也就是说,我们要能够让1引脚按要求变为高或低电平。即然我们要控制1脚,就得给它起个名字,总不能就叫它一脚吧?叫它什么名字呢?设计51芯片的INTEL公司已经起好了,就叫它P1.0,这是规定,不可以由我们来更改。 名字有了,我们又怎样让它变'高'或变'低'呢?叫人做事,说一声就可以,这叫发布命令,要计算机做事,也得要向计算机发命令,计算机能听得懂的命令称之为计算机的指令。让一个引脚输出高电平的指令是SETB,让一个引脚输出低电平的指令是CLR。因此,我们要P1.0输出高电平,只要写SETB P1.0,要P1.0输出低电平,只要写 CLR P1.0就可以了。 现在我们已经有办法让计算机去将P10输出高或低电平了,但是我们怎样才能计算机执行这条指令呢?总不能也对计算机也说一声了事吧。要解决这个问题,还得有几步要走。第一,计算机看不懂SETB CLR之类的指令,我们得把指令翻译成计算机能懂的方式,再让计算机去读。计算机能懂什么呢?它只懂一样东西——数字。因此我们得把SETB P1.0变为(D2H,90H ),把CLR P1.0变为 (C2H,90H ),至于为什么是这两个数字,这也是由51芯片的设计者--INTEL规定的,我们不去研究。第二步,在得到这两个数字后,怎样让这两个数字进入单片机的内部呢?这要借助于一个硬件工具"编程器"。 图2 我们将编程器与电脑连好,运行编程器的软件,然后在编缉区内写入(D2H,90H)见图2,写入……好,拿下片子,把片子插入做好的电路板,接通电源……什么?灯不亮?这就对了,因为我们写进去的指令就是让P10输出高电平,灯当然不亮,要是亮就错了。现在我们再拨下这块芯片,重新放回到编程器上,将编缉区的内容改为(C2H,90H),也就是CLR P1.0,写片,拿下片子,把片子插进电路板,接电,好,灯亮了。因为我们写入的()就是让P10输出低电平的指令。这样我们看到,硬件电路的连线没有做任何改变,只要改变写入单片机中的内容,就可以改变电路的输出效果。

    时间:2012-10-16 关键词: 单片机

  • 单片机内部结构分析

    我们已知单片机的内部有ROM、有RAM、有并行I/O口,那么,除了这些东西之外,单片机内部究竟还有些什么,这些个零碎的东西怎么连在一起的,让我们来对单片机内部作一个完整的分析吧! 看图(1)(本图太大,请大家找本书看吧,一般讲单片机的书,随便哪本都有)。从图中我们可以看出,在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在一个51单片机的内部包含了这么多的东西。 对上面的图进行进一步的分析,我们已知,对并行I/O口的读写只要将数据送入到相应I/O口的锁存器就可以了,那么对于定时/计数器,串行I/O口等怎么用呢?在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。事实上,我们已接触过P1这个特殊功能寄存器了,还有哪些呢?看表1 表1 下面,我们介绍一下几个常用的SFR,看图2。 图2 ACC:累加器,通常用A表示。这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后我们将学到指令,可以发现,所有的运算类指令都离不开它。 2、B:一个寄存器。在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW:程序状态字。这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看表2 表2 下面我们逐一介绍各位的用途 (1)CY:进位标志。8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。 例:78H+97H(01111000+10010111) (2)AC:半进位标志。 例:57H+3AH(01010111+00111010) (3)F0:用户标志位,由我们(编程人员)决定什么时候用,什么时候不用。 (4)RS1、RS0:工作寄存器组选择位。这个我们已知了。 (5)0V:溢出标志位。什么是溢出我们稍后再谈吧。 (6)P:奇偶校验位:它用来表示ALU运算结果中二进制数位“1”的个数的奇偶性。若为奇数,则P=1,否则为0。 例:某运算结果是78H(01111000),显然1的个数为偶数,所以P=0。 4、DPTR(DPH、DPL):数据指针,可以用它来访问外部数据存储器中的任一单元,如果不用,也可以作为通用寄存器来用,由我们自已决定如何使用。 5、P0、P1、P2、P3:这个我们已经知道,是四个并行输入/输出口的寄存器。它里面的内容对应着管脚的输出。 6、SP:堆栈指针。 堆栈介绍:日常生活中,我们都注意到过这样的现象,家里洗的碗,一只一只摞起来,最晚放上去的放在最上面,而最早放上去的则放在最下面,在取的时候正好相反,先从最上面取,这种现象我们用一句话来概括:“先进后出,后进先出”。请大家想想,还有什么地方有这种现象?其实比比皆是,建筑工地上堆放的砖头、材料,仓库里放的货物,都是“先进后出,后进先出”,这实际是一种存取物品的规则,我们称之为“堆栈”。 在单片机中,我们也可以在RAM中构造这样一个区域,用来存放数据,这个区域存放数据的规则就是“先进后出,后进先出”,我们称之为“堆栈”。为什么需要这样来存放数据呢?存储器本身不是可以按地址来存放数据吗?对,知道了地址的确就可以知道里面的内容,但如果我们需要存放的是一批数据,每一个数据都需要知道地址那不是麻烦吗?如果我们让数据一个接一个地放置,那么我们只要知道第一个数据所在地址单元就可以了(看图2)如果第一个数据在27H,那么第二、三个就在28H、29H了。所以利用堆栈这种方法来放数据可以简化操作 那么51中堆栈什么地方呢?单片机中能存放数据的区域有限,我们不能够专门分配一块地方做堆栈,所以就在内存(RAM)中开辟一块地方,用于堆栈,但是用内存的哪一块呢?还是不好定,因为51是一种通用的单片机,各人的实际需求各不相同,有人需要多一些堆栈,而有人则不需要那么多,所以怎么分配都不合适,怎样来解决这个问题?分不好干脆就不分了,把分的权利给用户(编程者),根据自已的需要去定吧,所以51单片机中堆栈的位置是可以变化的。而这种变化就体现在SP中值的变化,看图2,SP中的值等于27H不就相当于是一个指针指向27H单元吗?当然在真正的51机中,开始指针所指的位置并非就是数据存放的位置,而是数据存放的前一个位置,比如一开始指针是指向27H单元的,那么第一个数据的位置是28H单元,而不是27H单元,为什么会这样,我们在学堆栈命令时再说明。 

    时间:2012-10-16 关键词: 分析 内部结构 单片机

  • 单片机编码及译码器工作原理分析

    这节课主要为下节课的存储器存储原理打基础,数字电路对编码译码很了解了就可以跳过了。 我们把所使用的每一种二进制代码状态都赋于特定的含义,表示一个特定的信号或对象,叫编码。如用四位二进制数的0000~1001这十种状太,分别表示0~9这十个十进制数码,称为8421编码。反过来把代码的特定含义翻译出来,称为译码。 计算机在处理各种文字符号或数码时,必须把这些信息进行二进制编码,在编码时所使用的第一种二进制代码状态都赋予了特定的含义,即表示一个确定的信号或者对象,实现这种功能的电路叫编码器,如用于键盘的BCD码,ASCII码编码器等。 单片机外围电路用译码器较多,所以在这节课我们主要与大家一起来学习下译码器的工作原理,把代码的含义‘翻译’成相应的输出信号,以表示其原意。其功能恰恰与编码器相反。 译码器可以将输入代码的状态翻译成相应的输出信号,以高、低电平的形式在各自的输出端口送出,以表示其意愿。译码器有多个输入端和多个输出端。假如输入的端个数为,每个输出端只能有两个状态,则输出端个数最多有2n个。常用译码器输入、输出端头数来称呼译码器,如3线-8线译码器,4线-10线译码器等。我们经常用到的74138就是一个三线-八线译码器,朋友们可以到我们网站的《芯片资料》频道下载74138的中文资料。 编码、译码的概念我们了解下,下面我们就来重点来讲一下三-八译码器的工作原理,这在我们51单片机的接口电路中也是经常用到的。 74138的工作原理如下图所示:     从上图可看出,74138有三个输入端:A0、A1、A2和八个输出端Q0~Q7。当输入端A0、A1、A2的编码为000时,译码器输出为Q0=0,而Q1~Q7=1。即Q0对应于A0、A1、A2为000状态,低电平有效。A0、A1、A2的另外7种组合见后面的真值表。 图中S1、S2、S3为使能控制端,起到控制译码器是否能进行译码的作用。只有S1为高电平,S2、S3均为低电平时,才能进行译码,否则不论输入羰输入为何值,每个输出端均为1。 下图是输入端A0、A1、A2为000,控制端S1=1、S1=0、S2=0的电平示意图(红色数字为端口电平),大家可按下图进行分析,也可以分析输出端另外七种组合时的输出情况。      

    时间:2012-10-16 关键词: 工作原理 编码 译码器 单片机

  • 为什么要加看门狗?

    1:要讲系统的可靠性,首先要讲系统安全保证机制的可靠性,对于MCU系统来说,养DOG是其中最重要的一条 2:很多人可能要讲,我没养DOG,我的系统也很可靠,所以看门狗没有必要。这是一种不需要反驳的观点,从理论上来讲,养狗安全系数肯定会高一些; 3:在系统里面养狗,狗本身电路也是存在失效可能性的,在上面有人曾讲到MAX813翘了,这就属于这种情况,MAX813还属于比较好的,过去很多人经常用到的25045,内部集成了EE等资源,这东西不怎的,很容易被干扰得自己挂了。 4:很多人在争执系统里面应该如何养狗,很多人片面的以为狗一定要在主循环里面养才是最好的,在这里不得不说说hotpower的中断养狗论了,当年hotpower为了证明那些人的说法是何其错误,整出了一个中断养狗论,很多人根本没看懂hotpower想要表达的真实含义,从原理上讲,hotpower其实要表达的是:要想养一条忠实听话的好狗,在哪个地方养根本不重要,在哪个地方养都可以达到最好的效果,真正重要的是要注意软体返回的各个路径,在异常的时候,要通过条件互驳,让狗起来看家。 5:虽然hotpower中断养狗的方法也可以达到比较好的看家效果,但俺却是一个主循环养狗的坚定拥护者,原因无它,第一:主循环养狗简单明了;第二:主循环养狗比较省代码,第三:不管是中断还是主循环养狗,实现条件互驳,这只狗都一样忠实。 6:在这里不得不说程序结构,那种流水帐的程序结构,不管是中断还是主循环养狗,结果都是一样:养了一只癞皮狗!关于这一点,如果谁有不同意见,可以提出来讨论讨论 7:这些都做好了有什么用呢? 一个再忠实的狗,也只能是系统的一部分,在矿安产品中有一个说法叫:本安型,也就是本质安全性,当然,MCU系统是无法实现本安性的,所以需要看家的DOG,但系统的根本依然是要努力提高系统本身的安全性,一个再好的看门狗动作处理,也只能是尽量恢复现场,并且,系统也绝不能总是出现保护的行为,如果这样,将是一个不可原谅的设计…… 这就又延伸到电路设计和PCB设计甚至工艺设计等等问题,这不是这个主题帖讨论的范围,所以,俺也不说了…… DOG是为了防止不知道哪天出现的窃贼的,对付已知出现的窃贼,最好的办法就是直接拿棍子轰倒…… 对于一个系统,通过测试只是尽可能模拟实际可能出现的干扰,显然:从数学的概率讲,不能涵盖100%的情况,并且,一个产品可能大批量的被众多不同类型用户使用,所以,测试条件的样本抽取本就不可能重现100%现实状况。 一句胡说八道的理论:如果你的系统产生复位,说明你的设计不行,改好设计就可以,所以没有必要要看门狗…… 本人懒得反驳,看应和者居然众多,避免错误的理论误人子弟,必须以证视听: 我已经讲过多次了,测试只是一种必要不充分的条件,请认真理解这个来自数学的概念…… 没有测试,只能通过在实际使用条件下的试用来检验设计,这样的设计更加是不充分的测试,而且,这样的测试只能更加无序的浪费时间和精力…… 看来,21ICBBS里面,江湖郎中比较多…… 原帖地址:http://bbs.21ic.com/icview-84999-1-1.html                ——by yewuyi版主

    时间:2012-10-12 关键词: 看门狗

  • 详解MSP430看门狗使用方法

    以MSP430F2274为例。其中汇编实现采用的是IAR汇编,CCE汇编实现稍作修改即可。  1.看门狗有三种工作模式:停止模式,计时器模式,看门狗模式。 2.其中后两种模式可以选择的时钟源有:SMCLK和ACLK。 3.在使用后两种模式时候要注意单片机所处的状态下看门狗能否工作,如单片机处在LPM3时候只有ACLK时钟,处在LPM4下,没有时钟可以使用。 4.看门狗模式的使用方法:当看门狗计数溢出时,程序复位。在程序中开启看门狗,在计数溢出前清空看门狗,或重置看门狗,以使其重新计数。若程序跑飞,看门狗可能没有被清空或重置,就会溢,使程序复位。 5.在MSP430F2274中,看门狗模式下可以计时最长为1s,若需要以更长的时间复位,可采取的方法,使用其他计数器,计数满后执行((void (*)())RESET_VECTOR)();或计数满后往看门狗控制寄存器写个错误值或执行一条无效命令:如((void (*)())0x170)();0x170是外围模块的一个地址,不可能是一个函数地址,所以执行此句将使程序复位。 停止模式:关闭看门狗 C语言实现:WDTCTL = WDTPW + WDTHOLD 汇编语言实现:mov.w #WDTPW+WDTHOLD,&WDTCTL 计时器模式:作为一个计时器使用,计数器满产生中断时执行看门狗中断函数。 C语言实现: 主程序中:开启看门狗计时器,如:WDTCTL = WDT_MDLY_8;或WDTCTL = WDT_ADLY_250;等 看门狗中断函数为: #pragma vector=WDT_VECTOR __interrupt void watchdog_timer(void) { //.................................. } 汇编语言实现: 开启看门狗计时器,如: mov.w #WDTPW+WDTTMSEL+WDTCNTCL+WDTIS0 ,&WDTCTL 或 mov.w #WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0 ,&WDTCTL等 中断向量表中的看门狗中断向量: ORG 0FFF4h ;msp430f2274的看门狗中断地址 DW RESET ;程序开始处以REST作为标号 看门狗中断函数: WDT_ISR ;.................... reti 看门狗模式:计数溢出时,执行复位中断函数。 C语言实现: 清看门狗:WDTCTL = WDTPW+WDTCNCTL; 设置看门狗:WDTCTL = WDT_MRST_0_5; 或WDTCTL = WDT_ARST_1000;等 汇编语言实现: 中断向量表中的复位向量: ORG 0FFFEh ;msp430f2274的复位地址 DW RESET ;程序开始处以REST作为标号 清看门狗:mov.w #WDTPW+WDTCNCTL,&WDTCTL 设置看门狗: mov.w # WDTPW+WDTCNTCL+WDTIS1 ,&WDTCTL mov.w # WDTPW+WDTCNTCL+WDTSSEL,&WDTCTL;等 原帖地址:http://bbs.21ic.com/icview-339370-1-1.html

    时间:2012-10-12 关键词: 详解 msp 430 看门狗

  • 我的独立看门狗总结

    一、独立看门狗IWDG概述 1.)看门狗设备(独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障;当计数器达到给定的超时值时,触发一个中断或产生系统复位。 2.)功能图:(由于本人无法贴图,请见参考手册,125页) 3.)独立看门狗(IWDG)由专用的40kHz 的低速时钟为驱动;因此,即使主时钟发生故障它也仍然有效。 4.)其中IWDG_PR为预分频器寄存器,IWDG_RLR为重新加载计数器寄存器,IWDG_KR为控制器存器。IWDG_SR为状态寄存器。(见图) 5.)IWDG_KR写入OXCCCC,启动独立看门狗功能,计数器值开始递减,减到0时,看门狗复位。IWDG_KR写入0XAAAA,计数器值被重新加载,即避免看门狗复位。IWDG_KR写入0X5555,则允许写IWDG_PR 和IWDG_RLR寄存器写操作。写入其它值,IWDG_PR 和IWDG_RLR被保护,数据将无法写入这两个寄存器。IWDG_SR状态寄存器指示预分频值和递减计数器是否正在被更新。IWDG_RLR寄存器范围为0-0xfff. 6.)如果用户在选择字节中启用了“硬件看门狗“功能,在系统上电复位后,看门狗会自动开始运行;如果在计数器计数结束前,若软件没有向键寄存器写入相应的值,则系统会产生复位。 7。)看门狗复位时,系统复位,程序重新开始运行。 二、实验功能 为了实现IWDG复位功能,本人做了一个实验: 采用优易特电子的EDU开发板,功能如下: 系统上电,蜂鸣器延时叫一声,之后关闭。IWDG 40K的内部低速时钟进行8分频产生5KHZ的看门狗计数时钟,RLR设为2500,即看门狗复位时间设为500MS。LD1灯亮,表示看门狗初始化完毕。开启看门狗功能。定时器3定为200MS定时器,在每次定时器中断中,将看门狗计数器重新加载,当加载到25(5S)次以后,不再加载看门狗。这样,看门狗会在后面的时间发生复位,从而系统重新运行。检查蜂鸣器是否每约5S叫一声,如果这样表示IWDG发生了复位。功能检验完成。 经实验证明,以上功能均正确。 三、程序如下 main() { u32 temp; RCC_init(); Gpio_int(); GPIO_ResetBits(GPIOC,GPIO_Pin_6);//蜂鸣器叫一声关闭 for(temp=0;temp<200000;temp++); GPIO_SetBits(GPIOC,GPIO_Pin_6); IWDG_init(); GPIO_SetBits(GPIOF,GPIO_Pin_6);//LD1灯亮 Timer_init(); NVIC_init(); while(1); } ………………………………………………………………………. void IWDG_init(void) { /* Enable write access to IWDG_PR and IWDG_RLR registers */ IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable); /* IWDG counter clock: 40KHz(LSI) / 8 = 5 KHz */ IWDG_SetPrescaler(IWDG_Prescaler_8); /* Set counter reload value to 2499,500ms */ IWDG_SetReload(2499); /* Reload IWDG counter */ IWDG_ReloadCounter(); /* Enable IWDG (the LSI oscillator will be enabled by hardware) */ IWDG_Enable(); } void NVIC_init(void) { NVIC_InitTypeDef NVIC_InitStructure; #ifdef  VECT_TAB_RAM /* Set the Vector Table base location at 0x20000000 */ NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); #else  /* VECT_TAB_FLASH  */ /* Set the Vector Table base location at 0x08000000 */ NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0); #endif NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQChannel; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Timer_init(void) { TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; // --------------------------------------------------------------- //  TIM3 Configuration:  定时器3配置 //  TIM3CLK = 36 MHz, Prescaler =36000, TIM3 counter clock = 1KHz //  SET TTIM3 TIME 200mS //--------------------------------------------------------------- RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); // Time base configuration TIM_TimeBaseStructure.TIM_Period = 200; TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Down; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //Enables peripheral Preload register on ARR TIM_ARRPreloadConfig(TIM3,ENABLE); // Prescaler configuration TIM_PrescalerConfig(TIM3, 35999, TIM_PSCReloadMode_Immediate); TIM_InternalClockConfig(TIM3); //Enables  TIM interrupts TIM_ITConfig(TIM3,TIM_FLAG_Update,ENABLE); //TIM3 enable counter TIM_Cmd(TIM3, ENABLE); } ……………………………………………………………………… void TIM3_IRQHandler(void) { static u8 count=0; if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); //TIM3溢出中断需执行的代码在此添加 count++; if(count<=25) { /* Enable write access to IWDG_PR and IWDG_RLR registers */ IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable); /* Reload IWDG counter */ IWDG_ReloadCounter(); } } } 四、结语 独立看门狗时钟由内部40KHZ提供,所以不受主时钟的影响,即一旦启动看门狗,即便在调试过程中,暂停程序运行,看门狗也将不会停止,在复位时间到后仍会将系统复位。 原帖地址:http://bbs.21ic.com/icview-110937-1-1.html

    时间:2012-10-12 关键词: 独立 看门狗

  • 浅谈看门狗

    看门狗,又叫 watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗,一个输出到MCU的RST端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给 WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就回给出一个复位信号到MCU,是MCU复位. 防止MCU死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。 工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。所以在使用有看门狗的芯片时要注意清看门狗。 硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位如果出现死循环,或者说PC指针不能回来。那么定时时间到后就会使单片机复位。常用的WDT芯片如MAX813 ,5045, IMP 813等,价格4~10元不等. 软件看门狗技术的原理和这差不多,只不过是用软件的方法实现,我们还是以51系列来讲,我们知道在51单片机中有两个定时器,我们就可以用这两个定时器来对主程序的运行进行监控。我们可以对T0设定一定的定时时间,当产生定时中断的时候对一个变量进行赋值,而这个变量在主程序运行的开始已经有了一个初值,在这里我们要设定的定时值要小于主程序的运行时间,这样在主程序的尾部对变量的值进行判断,如果值发生了预期的变化,就说明T0中断正常,如果没有发生变化则使程序复位。对于T1我们用来监控主程序的运行,我们给T1设定一定的定时时间,在主程序中对其进行复位,如果不能在一定的时间里对其进行复位,T1 的定时中断就会使单片机复位。在这里T1的定时时间要设的大于主程序的运行时间,给主程序留有一定的的裕量。而T1的中断正常与否我们再由T0定时中断子程序来监视。这样就够成了一个循环,T0监视T1,T1监视主程序,主程序又来监视T0,从而保证系统的稳定运行。 51 系列有专门的看门狗定时器,对系统频率进行分频计数,定时器溢出时,将引起复位.看门狗可设定溢出率,也可单独用来作为定时器使用. 凌阳61的看门狗比较单一,一个是时间单一,第二是功能在实际的使用中只需在循环当中加入清狗的指令就OK了。 C8051Fxxx单片机内部也有一个21位的使用系统时钟的定时器,该定时器检测对其控制寄存器的两次特定写操作的时间间隔。如果这个时间间隔超过了编程的极限值,将产生一个WDT复位。 看门狗使用注意:大多数51 系列单片机都有看门狗,当看门狗没有被定时清零时,将引起复位。这可防止程序跑飞。设计者必须清楚看门狗的溢出时间以决定在合适的时候,清看门狗。清看门狗也不能太过频繁否则会造成资源浪费。程序正常运行时,软件每隔一定的时间(小于定时器的溢出周期)给定时器置数,即可预防溢出中断而引起的误复位。 看门狗运用:看门狗是恢复系统的正常运行及有效的监视管理器(具有锁定光驱,锁定任何指定程序的作用,可用在家庭中防止小孩无节制地玩游戏、上网、看录像)等具有很好的应用价值. 系统软件"看门狗"的设计思路: 1.看门狗定时器T0的设置。在初始化程序块中设置T0的工作方式,并开启中断和计数功能。系统Fosc=12 MHz,T0为16位计数器,最大计数值为(2的10次方)-1=65 535,T0输入计数频率是.Fosc/12,溢出周期为(65 535+1)/1=65 536(μs)。 2.计算主控程序循环一次的耗时。考虑系统各功能模块及其循环次数,本系统主控制程序的运行时间约为16.6 ms。系统设置"看门狗"定时器T0定时30 ms(T0的初值为65 536-30 000=35 536)。主控程序的每次循环都将刷新T0的初值。如程序进入"死循环"而T0的初值在30 ms内未被刷新,这时"看门狗"定时器T0将溢出并申请中断。 3.设计T0溢出所对应的中断服务程序。此子程序只须一条指令,即在T0对应的中断向量地址(000BH)写入"无条件转移"命令,把计算机拖回整个程序的第一行,对单片机重新进行初始化并获得正确的执行顺序。

    时间:2012-10-12 关键词: 看门狗

  • 关于软件硬件看门狗

    看门狗Watch Dog 是一个很重要的资源,他能够有效的防止系统进入死循环或者程序跑飞。 工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。 看门狗是类似与硬件保护卡之类.保护硬盘数据的. 是单片机一个复位芯片,在单片机遇到异常情况之下自动复位!~~ 看门狗电路是用来看着你的CPU的,作用是不让你的程序丢失。 看门狗实际上是一个计数器,一般给看门狗一个大数,程序开始运行后看门狗开始倒计数。如果程序运行正常,过一段时间CPU应发出指令让看门狗复位,重新开始倒计数。如果看门狗减到0就认为程序没有正常工作,强制整个系统复位。 一般是为了程序进入死循环或死机!有的单片机不需外加看门狗电路(PIC)。 看门狗定时器对微控制器提供了独立的保护系统.当系统出现故障时,在可选的超时周期之后,看门狗将以RESET信号作出响应.像x25045就可选超时周期为1.4秒,600毫秒,200毫秒三种.当你的程序死机时,x25045就会使单片机复位. 硬件看门狗WatchDog 是一个自我保护装置.他时刻监视系统的运行.一旦系统运行不正常.看门狗会复位系统.实际上看门狗是一个计时器.你要让这个计时器置零前给她一个信号.让他重新计时.这样起到一个监视系统运行的作用. 一般很多MCU带有这个电路。但是你可以不使用它。这样在上电的时候禁止他。如果你要使用watchdog,那么你的系统就必须每隔一段时间给这个电路一个信号。 如果你说的是软件看门狗,那么它的意思是:你可以创建一个看门狗,创建后开始计时,如果中间不被取消什么的,一段时间之后--这个时间通常都可以有你自己指定--它就会触发,而且你可以指定看门狗触发时执行一个你自己提供的看门狗函数。 那么它的使用就可以是这样的:为了确认程序会不会走到某个地方,你可以先创建一个看门狗,然后在要确认的地方调用一个取消看门狗计时的函数,如果程序确实走到了那个地方,看门狗被取消,那么看门狗函数就不会被执行;如果看门狗函数被执行了,说明程序没有走到该处,表明出现了什么错误。这就是看门狗的使用。 motorola mpc860这个芯片有个软件看门狗,当定时到时,芯片会复位。我看到别人的代码如下: void test(void) { 启动看门狗 while(true) { ... } } 照程序看来,如果看门狗不能停止的话,那肯定得重启了,但在这个程序中,它又如何的停止呢?看门狗用来在一定时间之后重启CPU,正常情况下不要它重启CPU,所以定期要“喂狗”,其实就是通知看门狗重新开始计时。这样一来,如果一切正常,看门狗每次在重启之前被触发重新计时,所以就永远不会重启。如果程序由于干扰等原因“跑飞”,不知道执行到什么地方去了,看门狗就没人喂了,时间一长,它就自动重启,程序恢复正常。 看门狗这东西是加强可靠性用的。 看门狗是不随主芯片时钟的停止而停止的,它是一个独立的计时单元,假如你在程序中使用并设置了看门狗寄存器,在系统加电后它就会启动,若在指定周期内没有重置看门狗寄存器(也就是大家常说的喂狗),系统将会重新启动。 这种设计为系统提供了极高的可靠性,即使系统死锁,也可以及时的自动恢复系统。 现在地绝大多数mcu都有这个 看门狗的主要操作一般有三种:启动,触发和停用.启动是指设置初始参数并调用中断以使看门狗开始工作;触发是指在看门狗的记数器的数值减为零以前对其恢复初始值;停用是指调用中断停止使用看门狗.在程序中应选择适当的地方对其进行触发选择时有许多讲究,程序比较大时会比较难确定,但使用它确实有很多优点不能说不容易用所以就不用 几乎所有的嵌入式操作系统都有看门狗任务,它的主要功能是防止系统死掉或者陷入死循环。也就是每个一定的时间就会执行看门狗任务,以reset系统. 喂狗的方式举个例子:在os任务调度的时候顺便触发一下看门狗,这样一旦任务长时间停止调度系统就会复位,这个功能实现起来很简单,并不需要应用程序多操什么心。 照一般的看门狗定时的使用方法一般为: 1。设置看门狗控制器;//初始化狗的唤醒时间,使能看门狗 2。睡眠; //等待,或作其它的事 3。唤醒后检测中断位是否是由狗中断导致的唤醒 4。延时完成,继续其它程序 看门狗在启动的时候一般都会设置超时时间,超时时间按照一定的频率递减,减到零就复位,所以得定时将一个计时器更新到最大,防止减小到零。超时时间初始化时一般都是固定好的。

    时间:2012-10-12 关键词: 软件 硬件 看门狗

首页 上一页 182 183 184 185 186 187 188 189 190 191 下一页  尾页 
发布文章