当前位置:首页 > 电源 > 功率器件
[导读]提高开关电源的功率因数,不仅可以节能,还可以减少电网的谐波污染,提高了电网的供电质量。为此,研究出多种提高功率因数的方法,其中,有源功率因数校正技术(简称APFC)就是其中的一种有效方法,它是通过在电网和电

提高开关电源的功率因数,不仅可以节能,还可以减少电网的谐波污染,提高了电网的供电质量。为此,研究出多种提高功率因数的方法,其中,有源功率因数校正技术(简称APFC)就是其中的一种有效方法,它是通过在电网和电源之间串联加入功率因数校正装置,目前最常用的为单相升压前置升压变换器原理,它由专用芯片实现的,且具有高效率、电路简单、成本低廉等优点,本文介绍的低成本电压型临界工作模式APFC控制芯片FAN7530即可实现该功能。

1 FAN7530的电路特点

1.1 内部电路

如图l所示,FAN7530N DIP8封装,也有SMD封装(FAN7530M),内部含有自启动定时器、正交倍增器、零电流检测器、图腾柱驱动输出、过压力过流欠压保护等电路。





1.2 FAN7530 PFC控制芯片的性能特点

该芯片的最大特点是采用电压控制临界工作模式,其它性能特点如下:

160μs的内置启动定时电路;

低的THD及高的功率因数;

过压、欠压、过流保护;

零电流检测器;

CRM控制模式;

工作温度低一40℃~+125℃;

低启动电流(40μA)及低工作电流(1.5mA)。

FAN7530是一个引脚简单、高性能的有源功率因数校正芯片。它是被优化的、稳定的、低功耗、高密度的电源芯片,且外围元器件少,节省了PCB布线空间。内置R/C滤波器,抗干扰能力强,对抑制轻载漂移现象增加了特殊电路。对辅助电源范围不要求,输出图腾驱动电路限制了功率MOSFET短路的危险,极大地提高了系统的可靠性。

2 有源功率因数校正原理设计

2.1 功率因数校正原理

如图2所示,控制芯片采用FAN7530,功率MOSFET S1的通、断受控于FAN7530的零点流检测器,当零电流检测器中的电流降为零时,即升压二极管D1中的电流为零时,S1导通,此时的电感L开始储能,电流控制波形如图3所示,这种零电流控制模式有以下优点:





由于储能电感中的电流为零时,S1才能导通,这样就大大减少了MOSFET的开关应力和损耗,同时对升压二极管的恢复时间没有严格的要求,另一方面免除了由于二极管恢复时间过长引起的开关损耗,增加了开关管的可靠性。

由于开关管的驱动脉冲时间无死区,所以输入电流是连续的,并呈正弦波,这样大大提高了系统的功率因数。[!--empirenews.page--]

2.2 应用设计举例

技术要求:

输入电网电压范围 AC 90~265V;

输出直流电压DC 400V;

输出功率 150W。

2.2.1 PFC电感的设计





电感的电气原理图如图4所示。


[!--empirenews.page--]


2.2.2 升压MOSFET的选择





2.2.3 升压二极管的选择





2.2.4 整流桥的选择


[!--empirenews.page--]


如图5所示FAN7530N在APFC前置变换器中的应用电路。





3 使用FAN7530的问题及解决方法

PFC中的自举二极管速度越快越好;

注意MOSFET的源极与地线的连接,减少谐振的发生;

PFC升压后高压电容的容量要够,尽量采用标准值;

整流桥后的金属化薄膜电容调整可以改变谐振;

FAN7530的脚1和脚3之间加R/C,适当调整参数可以减少轻载不稳定;

FAN7530的脚1和脚2之间的电容值影响启动时间;

该芯片在使用中发现,有很多优点,也有缺点。

4 结语

该设计经多次反复试验,PFC升压电感参数调整,及其它外围参数设计试验确定,功率MOSFET等器件的计算,已成功设计出150W升压前置变换器,并应用于适配器中。实践证明该方案是可行的,有一定的应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

很多同学便把这个结论应用于所有场景,这是不对的,今日特撰新文,补充、拓宽下电阻噪声的问题,以及使用采样电阻的注意事项(ir drop+0 Ωpdn),环环相扣,欢迎点赞、收藏、转发。正所谓阴在阳之内,不在阳之对。凡事有坏...

关键字: 电阻 噪声 电压

电线在携带电力四处移动方面有很多优点,但它也有缺点。毕竟,对于反复插拔手机和其他可充电小型设备,谁没有过心生厌倦呢?这确实很麻烦。

关键字: 电线 电缆 电压

为增进大家对电池的认识,本文将对电池的几个性能参数予以介绍。

关键字: 电池 指数 电压

智能家居的发展大约可以分为四个阶段,分别是萌芽期、开创期、徘徊期、融合演变期,未来几年会根据社会的发展以及互联网+时代的不断迈进,后续有望达到专家预想的爆发期阶段。

关键字: 智能家居 互联网+ 控制芯片

摘 要 : 目前 , 10 kV母线三相电压不平衡时有发生 ,表现为一相或两相对地电压升高 ,其余相降低。不平衡的电压影响调度员对于 线路是否接地的判断 ,亦有可能造成线路、主变保护电压闭锁功能的失效 ,严重时甚至会...

关键字: 母线 电压 三相不平衡

(全球TMT2022年6月28日讯)浪潮存储基于大量的NAND测试数据,在反复探索和实践推理过程中发现了企业级固体硬盘普遍面临三个挑战: 首先,NAND特性会影响数据的可靠性。例如NAND中未写满数据的块因数据保...

关键字: NAND 闪存盘 电压 Flash

为增进大家对电力系统的认识,本文将对电力系统中性点接地方式,以及电力系统调压手段予以介绍。

关键字: 电力系统 指数 电压

儒卓力(Rutronik Elektronische Bauelemente GmbH)推出RECOM公司E-K 系列中具有高功率密度的 20 W AC/DC 转换器RAC20E-K/277,它的特点是具有OVC III...

关键字: 儒卓力 转换器 电压

为什么监控电压很重要?我们知道监控电压轨可以帮助我们防止掉电、检测过压事件、测量电池电量并帮助我们实施整体诊断策略。本文将介绍如何实施电压监控。有四种关键方法:

关键字: 电压 电压监控

(全球TMT2022年4月22日讯)新思科技(Synopsys, Inc.)近日宣布与Ansys联合开发的电压时序签核解决方案已获三星采用,用以加速开发其具有理想功耗、性能和面积(PPA)的高能效比设计。该联合解决方案...

关键字: 三星 时序 电压 新思科技

功率器件

12198 篇文章

关注

发布文章

编辑精选

技术子站

关闭