“压敏电阻"是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件。英文名称叫“Voltage Dependent Resistor”简写为“VDR”, 或者叫做“Varistor"。
压敏电阻器是指一种对电压变化反应灵敏的限压型元件,其特点是:在规定的温度下,当电压超过某一临界值时,其阻值将急剧减小,通过它的电流急剧增加,电压和电流不呈线性关系。因此,压敏电阻器又被称为非线性变阻器。
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
交流伺服与直流伺服有什么不同,它们都有什么特点?直流伺服电机:就是把直流电机加上编码器 形成闭环控制,电机通过改变电的大小来改变电机的 扭矩,速度等参数。
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
伺服系统是一种高精度、高可靠性的运动控制系统,被广泛应用于机器人、数控机床、自动化生产线等领域。然而,在长期使用过程中,伺服系统也会出现一些故障,影响设备的正常运行。
红外热像仪是一种利用红外感知技术来检测物体温度及热辐射能量的设备。其核心元件是红外探测器,能将物体发出的不可见红外能量转化为可见的热图像。热图像的每个像素代表了物体表面某一区域的温度。
红外热像仪是一种用于捕捉、测量和显示物体表面温度的设备。其工作原理是基于红外辐射,即物体发出的热能。以下是关于红外热像仪工作原理的详细解释。
红外线测温仪是一种非接触式测温仪器,通过接收目标物体的红外辐射能量来确定其温度。红外线测温仪的工作原理主要基于两个基本概念:普朗克定律和斯蒂芬-玻尔兹曼定律。
频谱分析仪是用于分析信号的频率成分和功率的电子设备。分辨率是频谱分析仪的一个重要指标,它决定了频谱分析仪能够分辨的信号细节和频谱特征。在频谱分析仪的使用过程中,分辨率受到多种因素的影响,这些因素包括信号频率、信号强度、分析带宽、噪声等。
光谱分析仪是一种用于分析物质光学特性的重要仪器,广泛应用于科研和工业领域。它能够测量物质的光谱响应,从而确定物质的成分、浓度和物理性质。本文将详细介绍光谱分析仪的用途和参数测量方法。
频谱分析仪是用于分析信号频谱特性的重要工具,广泛应用于电子工程、通信、航空航天、医疗等领域。本文将介绍频谱分析仪的分类、工作原理及在不同领域的应用,旨在展示其在信号处理中的重要地位和作用。
在现代电子系统中,噪声是影响电路性能的重要因素之一。为了对电路的噪声性能进行准确的评估,我们需要使用频谱分析仪进行测量。本文将详细介绍频谱分析仪在测量电路噪声系数中的应用,包括噪声系数的定义、频谱分析仪的工作原理、测量步骤以及实际应用中的注意事项。
频谱分析仪是用于测量信号频率、幅度和功率谱等特性的重要工具,广泛应用于电子工程、通信、生物医学等领域。本文将介绍频谱分析仪的基本原理、使用方法和技巧,帮助读者更好地理解和使用频谱分析仪。
频谱分析仪是一种用于测量信号频谱特性的重要仪器,广泛应用于射频和微波领域中。在射频通信系统中,信号的频谱分析对于系统的设计和调试具有重要意义。本文将介绍频谱分析仪的测量功能及其在射频通信系统中的应用。