当前位置:首页 > 技术学院 > 基础知识科普站
[导读]化学气相淀积指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。

化学气相淀积指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。

化学气相沉积CVD (Chemical Vapor Deposition)化学气相淀积是把含有构成薄膜元素的气态反应剂引入反应室,在晶圆表面发生化学反应,从而生成所需的固态薄膜并淀积在其表面。在芯片制造过程中,大部分所需的薄膜材料,不论是导体、半导体,或是介电材料,都可以用化学气相淀积来制备,如二氧化硅膜、氮化硅膜、多晶硅膜等。它具有淀积温度低,薄膜成分和厚度易控,薄膜厚度与淀积时间成正比,均匀性与重复性好,台阶覆盖好,操作方便等优点。其中淀积温度低和台阶覆盖好对超大规模集成电路的制造十分有利。因此是集成电路生产过程中最重要的薄膜淀积方法。常用的有常压化学气相淀积、低压化学气相淀积以及等离子体增强化学气相淀积等。

CVD是利用气态物质在固体表面进行化学反应,生成固态沉积物的工艺过程。它一般包括三个步骤:(1)产生挥发性物质;(2)将挥发性物质输运到沉积区;(3)于基体上发生化学反应而生成固态产物。

反应器是CVD装置最基本的部件。根据反应器结构的不同,可将CVD技术分为开管气流法和封管气流法两种基本类型。

封管法这种反应系统是把一定量的反应物和适当的基体分别放在反应器的两端,管内抽真空后充入一定量的输运气体,然后密封,再将反应器置于双温区内,使反应管内形成一温度梯度。温度梯度造成的负自由能变化是传输反应的推动力,于是物料就从封管的一端传输到另一端并沉积下来。封管法的优点是:(1)可降低来自外界的污染;(2)不必连续抽气即可保持真空;(3)原料转化率高。其缺点是:(1)材料生长速率慢,不利于大批量生产;(2)有时反应管只能使用一次,沉积成本较高;(3)管内压力测定困难,具有一定的危险性。

开管法开管气流法的特点是反应气体混合物能够连续补充,同时废弃的反应产物不断排出沉积室。按照加热方式的不同,开管气流法可分为热壁式和冷壁式两种。热壁式反应器一般采用电阻加热炉加热,沉积室室壁和基体都被加热,因此,这种加热方式的缺点是管壁上也会发生沉积。冷壁式反应器只有基体本身被加热,故只有热的基体才发生沉积。实现冷壁式加热的常用方法有感应加热,通电加热和红外加热等。

由 化学气相沉积(CVD)技术所形成的膜层致密且均匀, 膜层与基体的结合牢固, 薄膜成分易控, 沉积速度快, 膜层质量也很稳定,某些特殊膜层还具有优异的光学、热学和电学性能, 因而易于实现批量生产。但是, CVD的沉积温度通常很高, 在 900℃~2000℃之间,容易引起零件变形和组织上的变化, 从而降低机体材料的机械性能并削弱机体材料和镀层间的结合力,使基片的选择、沉积层或所得工件的质量都受到限制。CVD技术正朝着中、低温和高真空两个方向发展, 并与等离子体、激光、超声波等技术相结合, 形成了许多新型的 CVD技术。

随着工业生产要求的不断提高, CVD的 工 艺 及 设 备 得到不断改进, 现已获得了更多新的膜层, 并大大提高了膜层的性能和质量。与此同时交叉、综合地使用复合的方法, 不仅启用了各种新型的加热源, 还充分运用了各种化学反应、高频电磁( 脉冲、射频、微波等) 及等离子体等效应来激活沉积离子, 成为技术创新的重要途径。CVD技术由于采用等离子体、激光、电子束等辅助方法降低了反应温度, 使其应用的范围更加广阔, 下一步应该朝着减少有害生成物, 提高工业化生产规模的方向发展。同时, CVD反应沉积温度的更低温化, 用 CVD更精确地控制材料的组成、结构、形态与性能技术的开发, 厚膜涂层技术、利用残余应力提高材料强度的技术、大型 连 续CVD薄 膜 及 涂 层 制 备 技 术 、新 材 料 的 合 成 技术 , 具 有 新 的 结 构 的 反 应 器 的 研 制 , 新 的 涂 层 材 料 及 具 有新的更能的材料体系的探索等, 将会成为今后研究的主要课题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭