当前位置:首页 > 厂商动态 > ADI
[导读]本次实验旨在研究使用增强模式NMOS晶体管的简单差分放大器。

目标

本次实验旨在研究使用增强模式NMOS晶体管的简单差分放大器

2021年6月学子专区文章中提出的关于硬件限制问题的说明对本次实验也是有效的。通过提高信号电平,然后在波形发生器输出和电路输入之间放置衰减器和滤波器(参见图1),可以改善信噪比。本次实验需要如下材料:

► 两个100 Ω电阻

► 两个1 kΩ电阻

► 两个0.1 μF电容(标记为104)

学子专区—ADALM2000实验:MOS差分对

图1.11:1衰减器/滤波器

本次实验的所有部分都会使用该衰减器和滤波器。

材料

► ADALM2000主动学习模块

► 无焊面包板

► 跳线

► 两个10 kΩ电阻

► 一个15 kΩ电阻(将10 kΩ和4.7 kΩ电阻串联)

► 两个小信号NMOS晶体管(CD4007或ZVN2110A)

说明

实验室硬件的连接如图2所示。M1和M2应从可用的且Vth匹配最佳的器件中选择。M1和M2的源极与R3的一端共享一个连接。R3的另一端连接到Vn (-5V),提供尾电流。M1的基极连接到第一个任意波形发生器的输出,M2的基极连接到第二个任意波形发生器的输出。两个集电极负载电阻R1和R2分别连接在M1和M2的集电极与正电源Vp (+5 V)之间。差分示波器输入2+/2-用于测量两个10 kΩ负载电阻上的差分输出。

学子专区—ADALM2000实验:MOS差分对

图2.带尾电阻的NMOS差分对

学子专区—ADALM2000实验:MOS差分对

图3.NMOS差分对面包板

硬件设置

第一个波形发生器配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V。第二个波形发生器也应配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V,但相位为180°。示波器的通道1应与1+连接到第一个波形发生器W1的输出,与1-连接到W2的输出。通道2应连接到标注2+和2-处,并设置为每格1 V。

程序步骤

获取如下数据:x轴是任意波形发生器的输出,y轴是使用2+和2-输入的示波器通道2。通过改变R3的值,同学们可以探索尾电流电平对电路增益的影响(观察通过原点的直线的斜率)和对线性输入范围的影响,以及当电路饱和时,观察增益非线性下降的形状。

学子专区—ADALM2000实验:MOS差分对

图4.NMOS差分对XY图

电流源用作尾电流

使用简单电阻作为尾电流具有局限性。同学们可以探索构建电流源来偏置差分对的方法。这可以由几个额外的晶体管和电阻构成,如之前的ADALM2000实验“稳定电流源”所示。

附加材料

► 两个小信号NMOS晶体管(M3和M4采用CD4007或ZVN2110A)

学子专区—ADALM2000实验:MOS差分对

图5.带尾电流源的差分对

硬件设置

第一个波形发生器配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V。第二个波形发生器也应配置为200 Hz三角波,峰峰值幅度为4 V,偏移为0 V,但相位为180°。电阻分压器将Q1和Q2的基极处的信号幅度降低到略小于200 mV。示波器的通道1应与1+连接到第一个波形发生器W1的输出,与1-连接到W2的输出。通道2应连接到标注2+和2-的位置,并设置为每格1 V。

学子专区—ADALM2000实验:MOS差分对

图6.带尾电流源的差分对面包板电路

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。XY图示例如图7所示。

学子专区—ADALM2000实验:MOS差分对

图7.带尾电流源的差分对XY图

测量共模增益

共模抑制(CMR)是差分放大器的一个关键方面。CMR可以通过将两个晶体管M1和M2的基极连接到同一输入源来测量。图10显示了当W1的共模电压从+3 V扫描至-3 V时,电阻偏置差分对和电流源偏置差分对的差分输出。当栅极上的正电压接近漏极电压,晶体管从饱和区进入三极管(阻性)区域时,增益受到的影响最大。这可以通过观察相对于地为单端(即将2-输入接地)的漏极电压来监测。应调整发生器的幅度,直到输出端信号就要开始削波/折叠。

学子专区—ADALM2000实验:MOS差分对

图8.测量共模增益

硬件设置

波形发生器配置为100 Hz正弦波,峰峰值幅度为6 V,偏移为0 V。示波器的通道1应与1+连接到第一个波形发生器W1的输出,与1-连接到地。通道2应连接到标注2+和2-的位置,并设置为每格1 V。

学子专区—ADALM2000实验:MOS差分对

图9.共模增益面包板电路

程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用LTspice®的波形示例如图10所示。

学子专区—ADALM2000实验:MOS差分对

图10.共模增益波形

问题:

► 如果将晶体管M1的基极视为输入,图8中的晶体管放大器对于输出2+和2-而言是反相还是同相?解释您的答案。

► 说明当输入电压(W1)增大或减小时,每个输出电压(2+和2-)会发生什么。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

北京2025年8月28日 /美通社/ -- 人工智能(AI)的迅速发展开启了高密度计算需求的新时代,而传统电源架构逐渐难以适应这一需求发展。为更好地响应此类需求,Analog Devices, Inc. (ADI)推出创...

关键字: ADI VDC 人工智能 数据中心

北京2025年8月27日 /美通社/ -- 当前,人形机器人正逐步迈向实际应用部署阶段,其落地节奏取决于物理智能与实时推理能力的发展。随着NVIDIA Jetson Thor平台的正式面市,Analog Devices,...

关键字: ADI NVIDIA 机器人 JETSON

北京 2025年7月17日 /美通社/ -- 随着AI迅速向边缘领域挺进,对智能边缘器件的需求随之激增。然而,要在小尺寸的微控制器上部署强大的模型,仍是困扰众多开发者的难题。开发者需要兼顾数据预处理、模型选择、超参数调...

关键字: 开源 嵌入式设备 AI ADI

美国 宾夕法尼亚 MALVERN、中国 上海 — 2025年7月1日 — 日前,威世科技Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出采用 0402外壳尺寸的新器件,扩展...

关键字: ADI Adafruit Arduino

OpenGMSL协会的成立开启了汽车连接技术的新篇章,将ADI成熟的GMSL技术转型为行业共享的开放标准。凭借GMSL技术其稳健的物理层、低延迟传输和广泛的应用支持,OpenGMSL为软件定义汽车提供了可靠的连接解决方案...

关键字: GMSL SerDes ADI OEM ADAS

上海2025年5月16日 /美通社/ -- 近日,全球领先人力资源咨询与解决方案提供商德科集团(The Adecco Group)发布2025年商业领袖研究报告——《引领人工智能时代:期望与现实(Leading in t...

关键字: AI 人工智能 ADI TI

在智能制造席卷工厂、电动汽车重塑出行、数字化浪潮席卷全球的当下,电子技术正成为驱动未来的核心引擎。ADI在2025慕尼黑上海电子展“秀出全身肌肉”,以一系列令人叹为观止的展示,勾勒出从智能工业到软件定义汽车的宏伟蓝图。从...

关键字: ADI wBMS 传感器 模拟 信号链 数字变送器

中国上海,2025 年3月17日 — 安富利旗下e络盟是一家发展迅速且非常可靠的产品和技术分销商,主要从事电子和工业系统设计、维护和维修,将于2025 年 3 月 20 日与Analog Devices Inc. (AD...

关键字: 物联网 ADI

CodeFusion Studio™系统规划器(System Planner)支持在异构架构中实现便捷的资源分配,并能够优化代码生成以提高效率 数据溯源软件开发(Data Provenance Software...

关键字: ADI CODE FUSION STUDIO

ADI解决方案使用Mie散射方法,LED更接近光电二极管。从而减小电路板尺寸,使得烟雾探测器可以更小更适应住宅和商业用途建筑。

关键字: ADI 烟雾探测器
关闭