当前位置:首页 > 电源 > 电源电路
[导读]与传统的脉宽调制 (PWM) 电源转换器不同,谐振转换器的输出电压通过频率调制进行调节。因此,谐振转换器的设计方法将不同于 PWM 转换器。 LLC 谐振转换器透过设计电路产生谐振的方式,实现功率开关元件的软切换,能显著的提升转换器效率,因此广受业界喜爱。但你是否也觉得 LLC 谐振转换器的补偿难以调整,Transient Response 太慢?系统频宽太低?单纯的电压回授已经无法满足设计需求,但是受限于 LLC 无法使用峰值电流模式控制,没办法设计更优化的回授与补偿器?

与传统的脉宽调制 (PWM) 电源转换器不同,谐振转换器的输出电压通过频率调制进行调节。因此,谐振转换器的设计方法将不同于 PWM 转换器。

LLC 谐振转换器透过设计电路产生谐振的方式,实现功率开关元件的软切换,能显著的提升转换器效率,因此广受业界喜爱。但你是否也觉得 LLC 谐振转换器的补偿难以调整,Transient Response 太慢?系统频宽太低?单纯的电压回授已经无法满足设计需求,但是受限于 LLC 无法使用峰值电流模式控制,没办法设计更优化的回授与补偿器?

LLC 在运作上使用固定 Duty 的脉冲讯号驱动全桥或半桥谐振电路,透过改变开关的频率来改变变压器的增益。在控制方式上,单电压环的LLC 控制已经是成熟的主流技术,透过比较输出电压与参考电压的方式变更工作频率,可以稳定的运作LLC 转换器,但其缺点也十分明显:无法及时反应输入电压变化、对应输出电流变动时恢复稳态电压的响应速度慢、系统频宽较低等。

为了改善上述的缺点,最佳的办法就是将电流也纳入控制环路中。这在学界与业界皆有相关的研究,目前的电流控制方式已经有很多选择。但是类比的 LLC 控制 IC 大都还是单电压控制,或者只能实现其中某一种控制方式,这时便可以看到全数控制的电源转换器的优势。

LLC谐振半桥变换器可以在宽电压范围内全负载条件下实现软开关,在整个工作过程中,实现初级MOSFET的零电压开关(ZVS)和次级整流二极管零电流开关(ZCS)。因此可以达到较高的效率和功率密度,而且在负载和输入电压范围变化较大的情况下,其开关频率变化较小。

在各种类型的谐振转换器中,图 1 中的 LLC 串联谐振转换器 (LLC-SRC) 因其更好的输出调节、更低的循环电流和更低的电路成本而备受关注。



电源提示:设计 LLC 谐振半桥电源转换器 

1:具有交流输入/输出电压的 LLC-SRC

串联谐振特性允许 DC/DC LLC-SRC 中的开关网络(如图 2 所示)具有非常宽的零电压开关 (ZVS) 区域;因此,LLC-SRC 可以在前端电源应用中轻松实现超过 94% 的效率,并在高开关频率下工作。

电源提示:设计 LLC 谐振半桥电源转换器 

2:LLC 谐振半桥转换器

PWM 转换器的设计过程类似,设计 LLC-SRC 的第一步是选择满载时所需的工作频率。其余步骤不同,因为谐振转换器中没有占空比因数。LLC-SRC 中的占空比保持不变,理想情况下为 50%。 3 显示了来自TI 电源设计研讨会主题设计 LLC 谐振半桥电源转换器”的 LLC-SRC 设计流程图。

电源提示:设计 LLC 谐振半桥电源转换器

3:LLC 谐振半桥转换器设计流程图

请注意,M g是直流电压增益,L n L m L r的比值,品质因数定义为公式 1:

电源提示:设计 LLC 谐振半桥电源转换器

此外,f n是定义为 f n = f sw /f o的归一化频率,其中

电源提示:设计 LLC 谐振半桥电源转换器 

M g /Q e M g /f n图表中的增益曲线来自图 1 所示的 LLC 谐振回路,它也是 LLC 谐振半桥转换器的线性化电路。

3 提供了 LLC 谐振半桥转换器的简单电路参数选择过程。通过检查增益曲线上的 f n_min f n_max位置,您将能够在所有输入条件下在开关网络上设计具有 ZVS 的高效 LLC 谐振半桥转换器。

在设计 LLC 谐振半桥转换器时,请记住:

· f n_min需要始终高于 M g /f n图表中的增益曲线的脊。这是为了确保 MOSFET 保持 ZVS。

· LLC-SRC 效率只能在一个操作点进行优化。当f sw = f o时,串联L rC r变为零阻抗(图4);转换器在这一点上具有最佳效率。您需要确定要优化的线路/负载条件,并确保您的开关频率在该条件下处于谐振频率。

电源提示:设计 LLC 谐振半桥电源转换器 

4:当 f sw = f o时具有交流输入/输出电压的 LLC-SRC



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭